Journal of Intelligent & Robotic Systems

, Volume 80, Supplement 1, pp 57–81 | Cite as

Robotic Ubiquitous Cognitive Ecology for Smart Homes

  • G. Amato
  • D. Bacciu
  • M. Broxvall
  • S. Chessa
  • S. Coleman
  • M. Di Rocco
  • M. Dragone
  • C. Gallicchio
  • C. Gennaro
  • H. Lozano
  • T. M. McGinnity
  • A. Micheli
  • A. K. Ray
  • A. Renteria
  • A. Saffiotti
  • D. Swords
  • C. Vairo
  • P. Vance
Article

Abstract

Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent-based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a proof of concept smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feedback received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work.

Keywords

Robotic ecology Networked robotics Ambient assisted living Cognitive robotics Wireless sensor and actuator networks Home automation Activity recognition Activity discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cook, D.J., Holder, L.B.: Sensor selection to support practical use of health-monitoring smart environments. Wiley Int. Rev. Data Min. and Knowl. Disc. 1, 339–351 (2011)CrossRefGoogle Scholar
  2. 2.
    Mahmoud, S.M., Lotfi, A., Langensiepen, C.: Abnormal behaviours identification for an elder’s life activities using dissimilarity measurements. In: Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’11, (New York, NY, USA), pp. 25:1–25:5, ACM (2011)Google Scholar
  3. 3.
    Gaddam, A., Mukhopadhyay, S., Sen Gupta, G.: Elder care based on cognitive sensor network. Sensors J. IEEE 11(3), 574–581 (2011)CrossRefGoogle Scholar
  4. 4.
    Lotfi, A., Langensiepen, C., Mahmoud, S.M., Akhlaghinia, M.: Smart homes for the elderly dementia sufferers: Identification and prediction of abnormal behaviour. J. Ambient Intell. Humanized Comput. 3(3), 205–218 (2012)CrossRefGoogle Scholar
  5. 5.
    Cesta, A., Cortellessa, G., Rasconi, R., Pecora, F., Scopelliti, M., Tiberio, L.: Monitoring elderly people with the robocare domestic environment: Interaction synthesis and user evaluation. Comput. Intell. 27(1), 60–82 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dressler, F.: Self-organization in autonomous sensor/actuator networks. In: Proc. of the Int Conf on Architecture of Computing Systems (2006)Google Scholar
  7. 7.
    Kim, J.-H., Kim, Y.-D., Lee, K.-H.: The Third Generation of Robotics: Ubiquitous Robot. In: Proceedings of the 2nd Int Conf on Autonomous Robots and Agents (2004)Google Scholar
  8. 8.
    Broxvall, M., Seo, B., Kwon, W. The PEIS Kernel: A Middleware for Ubiquitous Robotics. In: Proceedings of the IROS-07 Workshop on Ubiquitous Robotic Space Design and Applications. San Diego, California (2007)Google Scholar
  9. 9.
    Saffiotti, A., Broxvall, M.: PEIS Ecologies: Ambient Intelligence Meets Autonomous Robotics. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies, pp. 277–281, ACM (2005)Google Scholar
  10. 10.
    Broxvall, M.: A Middleware for Ecologies of Robotic Devices. In: Proceedings of the 1st international conference on Robot communication and coordination, p. 30, IEEE press (2007)Google Scholar
  11. 11.
    Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., López, R., Maguire, L., Mcginnity, M., Micheli, A., Renteria, A., O’Hare, G., Pecora, F.: Robotic ubiquitous cognitive network. In: Ambient Intelligence - Software and Applications, vol. 153 of Advances in Intelligent and Soft Computing, pp. 191–195, Springer Berlin Heidelberg (2012)Google Scholar
  12. 12.
    Lundh, R: Plan-based configuration of a group of robots. PhD thesis, Örebro University (2006)Google Scholar
  13. 13.
    Lundh, R., Karlsson, L., Saffiotti, A.: Plan-based Configuration of an Ecology of Robots. In: Robotics and Automation, 2007 IEEE International Conference on, pp. 64–70, IEEE (2007)Google Scholar
  14. 14.
    Gritti, A.S.M., Broxvall, M.: Reactive Self-configuration of an Ecology of Robots. Rome, Italy (2007)Google Scholar
  15. 15.
    Alam, M., Reaz, M., Mohd Ali, M.: Speed: An inhabitant activity prediction algorithm for smart homes. IEEE Trans. Syst. Man Cybern. Syst. Hum. 42(4), 985–990 (2012)CrossRefGoogle Scholar
  16. 16.
    Puteh, S., Langensiepen, C., Lotfi, A.: Fuzzy ambient intelligence for intelligent office environments. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, pp. 1–6 (2012)Google Scholar
  17. 17.
    Puteh, S., Lotfi, A., Langensiepen, C.S.: Activities recognition in intelligent office environment. In: Bota, J.A., Charitos, D. (eds.) Intelligent Environments (Workshops) (2013)Google Scholar
  18. 18.
    Liming, C., Nugent, C., Hui, W.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhang, S., McClean, S., Scotney, B.: Probabilistic learning from incomplete data for recognition of activities of daily living in smart homes. IEEE Trans. Inf. Technol. Biomed. 16(3), 454–462 (2012)CrossRefGoogle Scholar
  20. 20.
    Roggen, D., Forster, K., Calatroni, A., Troster, G.: The adarc pattern analysis architecture for adaptive human activity recognition systems. J. Ambient Intell. Humanized Comput. 4(2), 169–186 (2013)CrossRefGoogle Scholar
  21. 21.
    De, D., Tang, S., Song, W.-Z., Cook, D., Das, S.K.: Activity-aware sensor network in smart environments. Pervas. Mobile Comput. 8(5), 730–750 (2012)CrossRefGoogle Scholar
  22. 22.
    Kurz, M., Gerold, H., Ferscha, A., Calatroni, A., Roggen, D., Trster, G., Sagha, H., Chavarriaga, R., Milln, J.d.R., Bannach, D., Kunze, K., Lukowicz, P.: The OPPORTUNITY Framework and Data Processing Ecosystem for Opportunistic Activity and Context Recognition. Interna. J. Sensors, Wirel. Communicat. Cont. 1(2), 102–125 (2012)CrossRefGoogle Scholar
  23. 23.
    Roggen, D., Calatroni, A., Frster, K, Trster, G., Lukowicz, P., Bannach, D., Ferscha, A., Kurz, M., Hlzl, G., Sagha, H., Bayati, H., Milln, J.d.R., Chavarriaga, R. Activity recognition in opportunistic sensor environments. Procedia Computer Science, vol. 7, pp. 173–174 (2011). Proceedings of the 2nd European Future Technologies Conference and Exhibition 2011 (FET 11)Google Scholar
  24. 24.
    Jaeger, H.: Ksera project: Deliverable d4.1 learning & decision making algorithms in pervasive environments. tech. rep. (2010)Google Scholar
  25. 25.
    Hongmei, H., Zhenhuan, Z., Makinen, E.: A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks. IEEE Transact. Neural Networks 20, 973–982 (2009)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Parker, L.: Detecting and monitoring time-related abnormal events using a wireless sensor network and mobile robot. In: IEEE/RSJ Int. Conf. on Intel. Robots and Systems, 2008, pp. 3292–3298 (2008)Google Scholar
  27. 27.
    Nakano, H., Utani, A., Miyauchi, A., Yamamoto, H.: Synchronization-based data gathering scheme using chaotic pulse-coupled neural networks in wireless sensor networks. In: Proceedings of the IJCNN 2008, pp. 1115–1121 (2008)Google Scholar
  28. 28.
    Sun, Y., Li, L.: Hybrid learning algorithm for effective coverage in wireless sensor networks. In: Proc. of the ICNC 2008, vol. 5, pp. 227–231 (2008)Google Scholar
  29. 29.
    Kulkarni, R., Forster, A., Venayagamoorthy, G.: Computational intelligence in wireless sensor networks: A survey. IEEE Commun. Surv. Tutorials 13, 68–96 (2011)CrossRefGoogle Scholar
  30. 30.
    Kolen, J., Kremer, S. (eds.): A Field Guide to Dynamical Recurrent Networks. IEEE Press (2001)Google Scholar
  31. 31.
    Moustapha, A., Selmic, R.: Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Trans. Instrum. Meas. 57, 981–988 (2008)CrossRefGoogle Scholar
  32. 32.
    Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)CrossRefMATHGoogle Scholar
  33. 33.
    Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)CrossRefMATHGoogle Scholar
  34. 34.
    Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks. Neural Netw. 24(5), 440–456 (2011)CrossRefGoogle Scholar
  35. 35.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wirelesscommunication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  36. 36.
    Jaeger, H.: The echo state approach to analysing and training recurrent neural networks. tech. rep., GMD - German National Research Institute for Computer Science (2001)Google Scholar
  37. 37.
    Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput. Applic. 24(6), 1451–1464 (2014)CrossRefGoogle Scholar
  38. 38.
    Bacciu, D., Chessa, S., Gallicchio, C., Micheli, A., Barsocchi, P.: An experimental evaluation of reservoir computation for ambient assisted living. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.) Neural Nets and Surroundings, vol. 19 of Smart Innovation, Systems and Technologies, pp. 41–50, Springer Berlin Heidelberg (2013)Google Scholar
  39. 39.
    Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., Barsocchi, P.: Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Bhatt, M., Guesgen, H.W., Augusto, J.C. (eds.) Proceedings of the IJCAI Workshop on Space, Time and Ambient Intelligence (STAMI) 2011, pp. 1–6 (2011)Google Scholar
  40. 40.
    Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Mobile Lightweight Wireless Systems (Mobilight 2011), vol. 81 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 151– 168, Springer Berlin Heidelberg (2012)Google Scholar
  41. 41.
    Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A.: Multisensor data fusion for activity recognition based on reservoir computing. In: Botía, J., Alvarez-Garcia, J., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) Evaluating AAL Systems Through Competitive Benchmarking vol. 386 of Communications in Computer and Information Science, pp. 24–35, Springer Berlin Heidelberg (2013)Google Scholar
  42. 42.
    Knight, S., Rabideau, G., Chien, S., Engelhardt, B., Sherwood, R.: Casper: Space exploration through continuous planning. Intell. Syst. 16(5), 70–75 (2001)Google Scholar
  43. 43.
    Do, M.B., Kambhampati, S.: Sapa: A multi-objective metric temporal planner. J. Artif. Intell. Res. (JAIR) 20, 155–194 (2003)MATHGoogle Scholar
  44. 44.
    Gerevini, A., Saetti, A., Serina, I.: An approach to temporal planning and scheduling in domains with predictable exogenous events. J. Artif. Int. Res. 25, 187–231 (2006)MATHGoogle Scholar
  45. 45.
    Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Auton. Agent. Multi-Agent Syst. 19(3), 332–377 (2009)CrossRefGoogle Scholar
  46. 46.
    Barreiro, J., Boyce, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Smith, T., Do, M.: EUROPA: A platform for AI planning. In: Proc of ICAPS-ICKEPS (2012)Google Scholar
  47. 47.
    Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Proc. of the 19th Int. Conf. on Automated Planning and Scheduling (ICAPS) (2009)Google Scholar
  48. 48.
    Finzi, A., Ingrand, F., Muscettola, N.: Model-based executive control through reactive planning for autonomous rovers. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2004)Google Scholar
  49. 49.
    McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A Deliberative Architecture for AUV Control. In: Proc. of the Int. Conf. on Robotics and Automation (ICRA), (Pasadena) (May 2008)Google Scholar
  50. 50.
    McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive Control for Autonomous Underwater Vehicles. In: Proc. of the 23rd AAAI Conference on Artificial Intelligence, (Chicago, IL) (2008)Google Scholar
  51. 51.
    Köckemann, U., Pecora, F., Karlsson, L.: Towards planning with very expressive languages via problem decomposition into multiple csps. In: Proc. of the ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS) (2012)Google Scholar
  52. 52.
    Fratini, S., Pecora, F., Cesta, A.: Unifying planning and scheduling as timelines in a component-based perspective. Archives of Control Sciences 18(2), 231–271 (2008)MathSciNetMATHGoogle Scholar
  53. 53.
    Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: AIPS, pp. 61–67 (1994)Google Scholar
  54. 54.
    Lemai, S., Ingrand, F.: Interleaving temporal planning and execution in robotics domains. In: Proceedings of the 19th national conference on Artifical intelligence, AAAI’04, pp. 617–622, AAAI Press (2004)Google Scholar
  55. 55.
    Di Rocco, M., Pecora, F., Kumar, P., Saffiotti, A.: Configuration planning with multiple dynamic goals. In: Proc. of AAAI Spring Symposium on Designing Intelligent Robots (2013)Google Scholar
  56. 56.
    Rashidi, P.: The resident in the loop: Adapting the smart home to the user, vol. 39, p. 949959. IEEE Transactions on Systems, Man, and Cybernetics journal, Part A. (2009)Google Scholar
  57. 57.
    Tapia, E., Intille, S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. Pervasive Computing, p. 158175 (2004)Google Scholar
  58. 58.
    Watkins, C.: Learning from delayed rewards. PhD thesis. University of Cambridge, England (1989)Google Scholar
  59. 59.
    Eunju, K., Sumi, H., Cook, D.: Human activity recognition and pattern discovery. In: Neural Computing and Applications, vol. 9 of Pervasive Computing, pp. 48–53, IEEE (2010)Google Scholar
  60. 60.
    Rashidi, P., Cook, D., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011)CrossRefGoogle Scholar
  61. 61.
    Cook, D., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new partnership. IEEE T. Cybernetics 43(3), 820–828 (2013)CrossRefGoogle Scholar
  62. 62.
    Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: where do we go from here. Frontiers in Artificial Intelligence and Applications 171, 122–136 (2008)Google Scholar
  63. 63.
    Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolutionary Computation 11(2), 151–180 (2007)CrossRefGoogle Scholar
  64. 64.
    Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: research issues and challenges. Cogn. Syst. Res. 10, 141–160 (2009)CrossRefGoogle Scholar
  65. 65.
    Laird, J.E.: Extending the soar cognitive architecture. In: Proceedings of the Artificial General Intelligence Conference, (Memphis) (2008)Google Scholar
  66. 66.
    Laird, J.E.: The soar cognitive architecture. Artificial Intelligence and Simulation of Behaviour Quarterly, vol. 134 (2012)Google Scholar
  67. 67.
    Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In: Proceedings of the twenty-first aaai conference on artificial intelligence, (Boston) (2006)Google Scholar
  68. 68.
    Langley, P., Choi, D.: Learning recursive control programs from problem solving. J. Mach. Learn. Res. 7, 493–518 (2006)MathSciNetMATHGoogle Scholar
  69. 69.
    O’Reilly, R., Braver, T., Cohen, J.: A biologically-based computational model of working memory. In: Miyake, A., Shah, P. (eds.) Models of Working Memory, pp. 375–411. Cambridge University Press (1999)Google Scholar
  70. 70.
    Edelman, G.: Neural darwinism: Selection and reentrant signaling in higher brain function. Neuron 10(2), 115–125 (1993)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  72. 72.
    Peebles, D., Banks, A.: Modelling dynamic decision making with the act-r cognitive architecture. Journal of Artificial General Intelligence 2(5), 52–68 (2010)Google Scholar
  73. 73.
    Sun, R.: The importance of cognitive architectures: An analysis based on clarion. Journal of Experimental and Theoretical Artificial Intelligence 19, 159–193 (2007)CrossRefGoogle Scholar
  74. 74.
    Sun, R.: Motivational representations within a computational cognitive architecture. Cognitive Computation 1(1), 91–103 (2009)CrossRefGoogle Scholar
  75. 75.
    Ray, A.K., Leng, G., McGinnity, T.: Development of cognitive capabilities for smart home using a self-organizing fuzzy neural network. In: 10th IFAC Symposium on Robot Contro 10, 447–454 (2012). Dubrovnik, CroatiaGoogle Scholar
  76. 76.
    Ray, A.K., Leng, G., McGinnity, T., Coleman, S., Maguire, L.: Development of a self sustaining cognitive architecture. Biologically Inspired Cognitive Architecture, Elsevier 6, 96–108 (2013)CrossRefGoogle Scholar
  77. 77.
    Leng, G., McGinnity, T.M., Prasad, G.: Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Transactions on Fuzzy Systems 14(6), 755–766 (2006)CrossRefGoogle Scholar
  78. 78.
    Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., Vairo, C.: When wireless sensor networks meet robots. In: Proceedings of the Seventh International Conference on Systems and Networks Communications (ICSNC 2012), pp. 35–40, ThinkMind (TM) Digital Library, Lisbon, Portugal (2012)Google Scholar
  79. 79.
    Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput. & Applic. 24(6), 1451–1464 (2014)CrossRefGoogle Scholar
  80. 80.
    Bacciu, D., Di Rocco, M., Gallicchio, C., Micheli, A., Saffiotti, A.: Learning context-aware mobile robot navigation in home environments. In: To Appear in the Proceedings of the 5th International Conference on Information, Intelligence, Systems and Applications (IISA 2014), 7-9 July 2014, Chania, Greece IEEE (2014)Google Scholar
  81. 81.
    Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc language: A holistic approach to networked embedded systems. In: Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and implementation, PLDI ’03, pp. 1–11, ACM (2003)Google Scholar
  82. 82.
    Ray, A.K., Leng, G., McGinnity, T., Coleman, S., Maguire, L.: Dynamically reconfigurable online self-organising fuzzy neural network with variable number of inputs for smart home. In: NCTA 2013 - International Joint Conference on Computational Intelligence. Algarve, Portugal (2013)Google Scholar
  83. 83.
    Leng, G., Ray, A.K., McGinnity, T., Coleman, S., Maguire, L.: Online sliding window based self-organising fuzzy neural network for cognitive reasoning. in COGNITIVE 2013, The Fifth International Conference on Advanced Cognitive Technologies and Applications, (Valencia, Spain), pp. 114–119, IARIA (2013)Google Scholar
  84. 84.
    Dragone, M., Abdel-Naby, S., Swords, D., O’Hare, G., Broxvall, M.: A programming framework for multi-agent coordination of robotic ecologies. In: ProMAS 2012, 72–89 (2012)Google Scholar
  85. 85.
    Dragone, M.: Building self-adaptive software systems with component, services & agents technologies: Self-osgi. In: 4th International Conference, ICAART 2012, Vilamoura, Portugal, February 6-8, 2012. Agents and Artificial Intelligence Communications in Computer and Information Science, 300–316 (2012)Google Scholar
  86. 86.
    Di Rocco, M., Pecora, F., Saffiotti, A.: When robots are late: Configuration planning for multiple robots with dynamic goals, in IROS (2013)Google Scholar
  87. 87.
    Di Rocco, M., Pecora, F., Saffiotti, A.: Closed loop configuration planning with time and resources. In: Proceedings of the ICAPS 2013 Workshop on Planning and Robotics (2013)Google Scholar
  88. 88.
    Robotic ubiquitous cognitive network (rubicon) website (2014)Google Scholar
  89. 89.
    Amato, G., Chessa, S., Gennaro, C., Pallini, D., Vairo, C.: A data logger forwireless sensor network. In: Proceedings of 2nd International Conference On Sensor Networks (Sensornets), (PRT), pp. 65–68, SciTePress - Science and Technology Publications (2013)Google Scholar
  90. 90.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inform. Process. Management 45(4), 427–437 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • G. Amato
    • 1
  • D. Bacciu
    • 2
  • M. Broxvall
    • 3
  • S. Chessa
    • 2
  • S. Coleman
    • 4
  • M. Di Rocco
    • 3
  • M. Dragone
    • 5
  • C. Gallicchio
    • 2
  • C. Gennaro
    • 1
  • H. Lozano
    • 6
  • T. M. McGinnity
    • 4
  • A. Micheli
    • 2
  • A. K. Ray
    • 4
  • A. Renteria
    • 6
  • A. Saffiotti
    • 3
  • D. Swords
    • 7
  • C. Vairo
    • 1
  • P. Vance
    • 4
  1. 1.ISTI-CNRPisaItaly
  2. 2.Università di PisaPisaItaly
  3. 3.Örebro UniversitetStockholmSweden
  4. 4.University of UlsterUlsterUK
  5. 5.Trinity College DublinDublinIreland
  6. 6.TecnaliaMadridSpain
  7. 7.University College DublinDublinIreland

Personalised recommendations