Journal of Intelligent & Robotic Systems

, Volume 80, Issue 1, pp 33–58 | Cite as

A Distributed Task Allocation Algorithm for a Multi-Robot System in Healthcare Facilities

  • Gautham P. Das
  • Thomas M. McGinnity
  • Sonya A. Coleman
  • Laxmidhar Behera


Various ambient assisted living (AAL) technologies have been proposed for improving the living conditions of elderly people. One of them is to introduce robots to reduce dependency on support staff. The tasks commonly encountered in a healthcare facility such as a care home for elderly people are heterogeneous and are of different priorities. A care home environment is also dynamic and new emergency priority tasks, which if not attended shortly may result in fatal situations, may randomly appear. Therefore, it is better to use a multi-robot system (MRS) consisting of heterogeneous robots than designing a single robot capable of doing all tasks. An efficient task allocation algorithm capable of handling the dynamic nature of the environment, the heterogeneity of robots and tasks, and the prioritisation of tasks is required to reap the benefits of introducing an MRS. This paper proposes Consensus Based Parallel Auction and Execution (CBPAE), a distributed algorithm for task allocation in a system of multiple heterogeneous autonomous robots deployed in a healthcare facility, based on auction and consensus principles. Unlike many of the existing market based task allocation algorithms, which use a time extended allocation of tasks before the actual execution is initialised, the proposed algorithm uses a parallel auction and execution framework, and is thus suitable for highly dynamic real world environments. The robots continuously resolve any conflicts in the bids on tasks using inter-robot communication and a consensus process in each robot before a task is assigned to a robot. We demonstrate the effectiveness of the CBPAE by comparing its simulation results with those of an existing market based distributed multi-robot task allocation algorithm and through experiments on real robots.


Ambient assisted living Robots in healthcare facilities Multi-robot systems Multi-robot task allocation Distributed task allocation Market based task allocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AlShebli, B.K., Gilbert, E., Karahalios, K.: The social implications of an assisted living reminder system. In: Schuler, D. (ed.) Online Communities and Social Computing, volume 4564, Lecture Notes in Computer Science, pp 239–249. Springer, Berlin Heidelberg (2007)Google Scholar
  2. 2.
    Argyle, M., Casbeer, D.W., Beard, R.: A multi-team extension of the consensus-based bundle algorithm. In: Proceedings American Control Conference (ACC), pp. 5376–5381 (2011)Google Scholar
  3. 3.
    Arslan, G., Marden, J.R., Shamma, J.S.: Autonomous vehicle-target assignment: a game-theoretical formulation. ASME. J. Dyn. Syst., Meas. Control 129(5), 584–596 (2007)CrossRefGoogle Scholar
  4. 4.
    Berman, S., Halasz, A., Ani Hsieh, M., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)CrossRefGoogle Scholar
  5. 5.
    Bertuccelli, L.F., Choi, H.L., Cho, P., How, J.P.: Real-time multi-UAV task assignment in dynamic and uncertain environments. In: Proceedings AIAA Guidance Navigation and Control Conf., pp. 1–16. Chicago (2009)Google Scholar
  6. 6.
    Blazewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: conventional and new solution techniques. Eur. J. Op. Res. 93(1), 1–33 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bovet, D.P., Cesati, M.: Understanding the Linux kernel, 2nd edn. O’Reilly & Associates, Inc., Sebastopol (2002)Google Scholar
  8. 8.
    Broadbent, E., Tamagawa, R., Kerse, N., Knock, B., Patience, A., MacDonald, B.: Retirement home staff and residents’ preference for healthcare robots. In: Proceedings 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 645–650. Toyama, Japan (2009)Google Scholar
  9. 9.
    Chapman, A.C., Micillo, R.A., Kota, R., Jennings, N.R.: Decentralised dynamic task allocation : a practical game theoretic approach. In: Proceedings 8th International Conference Autonomous Agents and Multiagent Systems (AAMAS), pp. 915–922. Budapest, Hungary (2009)Google Scholar
  10. 10.
    Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)CrossRefGoogle Scholar
  11. 11.
    Das, G.P., Mcginnity, T.M., Coleman, S.A., Behera, L.: A fast distributed auction and consensus process for allocation of prioritised tasks in multi-robot systems. In: Proceedings Irish Conf. Artificial Intelligence and Cognitive Science (AICS), pp. 244–253 (2011)Google Scholar
  12. 12.
    Das, G.P., Mcginnity, T.M., Coleman, S.A., Behera, L.: A fast distributed auction and consensus process using parallel task allocation and execution. In: Proceedings IEEE/RSJ International Conference Intelligence Robotics System (IROS), pp. 4716–4721. San Francisco (2011)Google Scholar
  13. 13.
    Dautenhahn, K., Woods, S., Kaouri, C., Walters, M.L., Koay, K.L., Werry, I.: What is a robot companion- friend, assistant or butler?. In: Proceedings IEEE/RSJ International Conference Intelligence Robotics System (IROS), pp. 1192–1197 (2005)Google Scholar
  14. 14.
    Dias, M.B.: Traderbots: A new paradigm for robust and efficient multirobot coordination in dynamic environments. Ph.D. thesis, Pittsburgh, PA, USA (2004)Google Scholar
  15. 15.
    Dias, M.B., Stentz, A.: A free market architecture for distributed control of a multirobot system. In: Proceedings 6th International Conference Intelligence Autonomous System (IAS), pp. 115–122 (2000)Google Scholar
  16. 16.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination - a survey and analysis. Proceedings IEEE (Special Issue on Multi-Robot Systems) 94(7), 1257–1270 (2006)Google Scholar
  17. 17.
    Flandorfer, P.: Population ageing and socially assistive robots for elderly persons : The importance of sociodemographic factors for user acceptance. Int. J. Popul. Res. 2012 (2012)Google Scholar
  18. 18.
    Gerkey, B.P., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  19. 19.
    Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  20. 20.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings International Conference Advanced Robotics (ICAR), pp. 317–323. Coimbra, Portugal (2003)Google Scholar
  21. 21.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  22. 22.
    Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J., Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. In: Fishkin, K., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive Computing, volume 3968, Lecture Notes in Computer Science, pp 349–365. Springer, Berlin Heidelberg (2006)Google Scholar
  23. 23.
    Jayawardena, C., Kuo, I.H., Unger, U., Igic, A., Wong, R., Watson, C.I., Stafford, R., Broadbent, E., Tiwari, P., Warren, J., Sohn, J., MacDonald, B.A.: Deployment of a service robot to help older people. In: Proceedings IEEE/RSJ International Conference Intelligence Robotics Systems (IROS), pp. 5990–5995 (2010)Google Scholar
  24. 24.
    Jianping, C., Yang, Y., Yunbiao, W.: Multi-robot task allocation based on robotic utility value and genetic algorithm. In: Proceedings IEEE International Conference Intelligence Computing and Intelligence Systems, pp. 256–260 (2009)Google Scholar
  25. 25.
    Johnson, L.B., Ponda, S.S., Choi, H.L., How, J.P.: Improving the efficiency of a decentralized tasking algorithm for UAV teams with asynchronous communications. In: Proceedings AIAA Guidance, Navigation, and Control Conference, pp. 1–22. Toronto, Canada (2010)Google Scholar
  26. 26.
    Koenig, S., Tovey, C., Lagoudakis, M.G., Markakis, V., Kempe, D., Keskinocak, P., Kleywegt, A.J., Meyerson, A., Jain, S.: The power of sequential single-item auctions for agent coordination. In: Proceedings AAAI National Conference Artificial Intelligence pp. 1625–1629 (2006)Google Scholar
  27. 27.
    Lagoudakis, M.G., Berhault, M., Koenig, S., Keskinocak, P., Kleywegt, A.J.: Simple auctions with performance guarantees for multi-robot task allocation. In: Proceedings IEEE/RSJ International Conference Intelligence Robotics Systems (IROS), pp. 698–705 (2004)Google Scholar
  28. 28.
    Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task allocation in multi-robot systems. Int. J. Robot. Res. 25(3), 225–241 (2006)CrossRefGoogle Scholar
  29. 29.
    Golfarelli, M., Maio, D., Rizzi, S.: Multi-agent path planning based on task-swap negotiation. In: Proceedings 16th UK Planning and Scheduling SIG Workshop. Durham, England (1997)Google Scholar
  30. 30.
    Mercker, T., Casbeer, D.W., Millet, P.T., Akella, M.R.: An extension of consensus-based auction algorithms for decentralized, time-constrained task assignment. In: Proceedings American Control Conference (ACC), pp. 6324–6329 (2010)Google Scholar
  31. 31.
    Milgrom, P.: Putting auction theory to work: The simultaneous ascending auction. J. Polit. Econ. 180(2), 245–272 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ngo-The, A., Ruhe, G.: Optimized resource allocation for software release planning. IEEE Trans. Software Eng. 35(1), 109–123 (2009)CrossRefGoogle Scholar
  33. 33.
    Nugent, C.D., Finlay, D.D., Fiorini, P., Tsumaki, Y., Prassler, E.: Editorial: Home automation as a means of independent living. IEEE Trans. Autom. Sci. Eng. 5(1), 1–9 (2008)CrossRefGoogle Scholar
  34. 34.
    Oestreicher, L., Eklundh, K.S.: User expectations on human-robot co-operation. In: Proceedings 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 91–96. Hatfield, UK (2006)Google Scholar
  35. 35.
    Ozkil, A.G., Fan, Z., Dawids, S., Aans, H., Kristensen, J.K., Christensen, K.H.: Service robots for hospitals : A case study of transportation tasks in a hospital. In: Proceedings IEEE International Conference Automated and Logistics, pp. 289–294 Shenyang, China (2009)Google Scholar
  36. 36.
    Parsons, S., Rodriguez-Aguilar, J.A., Klein, M.: Auctions and bidding: A guide for computer scientists. ACM Computing Surveys (CSUR) 43(2), 10:1–10:59 (2011)CrossRefGoogle Scholar
  37. 37.
    Patel, S., Kientz, J., Jones, B., Price, E., Mynatt, E., Abowd, G.: An overview of the aware home research initiative at the Georgia Institute of Technology. In: Proceedings International Future Design Conference Global Innovations in Macro- and Micro-Environments for the Future, pp. 169–181. Seoul, Korea (2007)Google Scholar
  38. 38.
    Ponda, S., Redding, J., Choi, H., How, J., Vavrina, M., Vian, J.: Decentralized planning for complex missions with dynamic communication constraints. In: Proceedings of the 2010 American Control Conference (ACC), pp. 3998–4003. (2010)Google Scholar
  39. 39.
    Quigley, M., Gerkey, B.P., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: An open-source Robot Operating System. In: Proceedings Open-Source Software workshop of Int. Conf. Robot. Autom. (ICRA) (2009)Google Scholar
  40. 40.
    Ray, C., Mondada, F., Siegwart, R.: What do people expect from robots? In: Proceedings IEEE/RSJ Int. Conf. Intell. Rob. Syst. (IROS), pp. 3816–3821 (2008)Google Scholar
  41. 41.
    Rossum, G.v.: Python website., (1990-2013)
  42. 42.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 135, 1–54 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Sariel-Talay, S., Balch, T.R., Erdogan, N.: Multiple traveling robot problem: A solution based on dynamic task selection and robust execution. IEEE/ASME Trans. Mechatronics 14(2), 198–206 (2009)CrossRefGoogle Scholar
  44. 44.
    Shah, K., Meng, Y.: Communication-efficient dynamic task scheduling for heterogeneous multi-robot systems. In: Proceedings of the 2007 International Symposium on Computational Intelligence in Robotics and Automation, pp. 230–235. IEEE (2007), doi: 10.1109/CIRA.2007.382855
  45. 45.
    Stav, E., Walderhaug, S., Mikalsen, M., Hanke, S., Benc, I.: Development and evaluation of SOA-based AAL services in real-life environments: A case study and lessons learned. Int. J. Med. Inform., 1–25 (2011)Google Scholar
  46. 46.
    Tang, F., Parker, L.E.: A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market based task allocation. In: Proceedings IEEE International Conference Robotics Automated (ICRA), pp. 3351–3358 (2007)Google Scholar
  47. 47.
    Vydyanathan, N., Krishnamoorthy, S., Sabin, G.M., Catalyurek, U.V., Kurc, T., Sadayappan, P., Saltz, J.H.: An integrated approach to locality-conscious processor allocation and scheduling of mixed-parallel applications. IEEE Trans. Parallel and Distributed Syst. 20, 1158–1172 (2009)CrossRefGoogle Scholar
  48. 48.
    Zhang, K., Collins, E., Shi, D.: Centralized and distributed task allocation in multi-robot teams via a stochastic clustering auction. ACM Trans. Auton. Adapt. Syst. 7(2), 21:1–21:22 (2012)CrossRefGoogle Scholar
  49. 49.
    Zhang, K., Collins, E.G., Barbu, A.: A novel stochastic clustering auction for task allocation in multi-robot teams. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3300–3307. IEEE (2010), doi: 10.1109/IROS.2010.5652799
  50. 50.
    Zheng, T., Yang, T.: Optimal ant colony algorithm based multi-robot task allocation and processing sequence scheduling. In: Proceedings 7th World Congress on Intelligence Control and Automated, pp. 5693–5698 (2008)Google Scholar
  51. 51.
    Zlot, R., Stentz, A.: Market-based complex task allocation for multirobot teams. In: Proceedings 24th US Army Science Conference - Transformational Science and Technology for the Current and Future Force, pp. 169–176. World Scientific Publishing Co. Pte. Ltd (2006)Google Scholar
  52. 52.
    Zuluaga, M., Vaughan, R.: Modeling multi-robot interaction using generalized occupancy grids, with application to reducing spatial interference. In: Proceedings IEEE International Conference Robotics Automated (ICRA), pp. 1922–1927 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gautham P. Das
    • 1
  • Thomas M. McGinnity
    • 1
  • Sonya A. Coleman
    • 1
  • Laxmidhar Behera
    • 2
  1. 1.Intelligent Systems Research CentreUlster University (Magee Campus)Northern IrelandUK
  2. 2.Department of Electrical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations