Advertisement

Journal of Intelligent & Robotic Systems

, Volume 80, Issue 1, pp 15–31 | Cite as

Neural Network Control of a Rehabilitation Robot by State and Output Feedback

  • Wei HeEmail author
  • Shuzhi Sam Ge
  • Yanan Li
  • Effie Chew
  • Yee Sien Ng
Article

Abstract

In this paper, neural network control is presented for a rehabilitation robot with unknown system dynamics. To deal with the system uncertainties and improve the system robustness, adaptive neural networks are used to approximate the unknown model of the robot and adapt interactions between the robot and the patient. Both full state feedback control and output feedback control are considered in this paper. With the proposed control, uniform ultimate boundedness of the closed loop system is achieved in the context of Lyapunov’s stability theory and its associated techniques. The state of the system is proven to converge to a small neighborhood of zero by appropriately choosing design parameters. Extensive simulations for a rehabilitation robot with constraints are carried out to illustrate the effectiveness of the proposed control.

Keywords

Adaptive neural network control Full state feedback control Lyapunov’s direct method Output feedback control Rehabilitation robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolfe, C.: The impact of stroke. Br. Med. Bull. 56(2), 275–286 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hogan, N., Krebs, H., Rohrer, B., Palazzolo, J., Dipietro, L., Fasoli, S., Stein, J., Hughes, R., Frontera, W., Lynch, D., et al.: Motions or muscles? some behavioral factors underlying robotic assistance of motor recovery. J. Rehabil. Res. Dev. 43(5), 605 (2006)CrossRefGoogle Scholar
  3. 3.
    Riener, R., Lünenburger, L., Colombo, G.: Human-centered robotics applied to gait training and assessment. J. Rehabil. Res. Dev. 43(5), 679–694 (2006)CrossRefGoogle Scholar
  4. 4.
    Koh, C., Hoffmann, T., Bennett, S., McKenna, K.: Management of patients with cognitive impairment after stroke: A survey of australian occupational therapists. Aust. Occup. Ther. J. 56(5), 324–331 (2009)CrossRefGoogle Scholar
  5. 5.
    He, W., Ge, S.S., Li, Y., Chew, E., Ng, Y.S.: Impedance control of a rehabilitation robot for interactive training, In Proceedings of the 2012 International Conference on Social Robotics, Chengdu, China, pp. 526–535 (2012)Google Scholar
  6. 6.
    Yang, C., Ganesh, G., Haddadin, S., Parusel, S. , Albu-Schaeffer, A., Burdet, E.: Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(3), 607–616 (2007)CrossRefGoogle Scholar
  8. 8.
    Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, Y., Ge, S.S., Yang, C.: Learning impedance control for physical robot–environment interaction. Int. J. Control 85(2), 182–193 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hogan, N.: Impedance control: An approach to manipulation: Part iii applications. J. Dyn. Syst. Meas., control 107(2), 1–24 (1985)zbMATHCrossRefGoogle Scholar
  11. 11.
    Huang, L., Ge, S.S., Lee, T.H.: Position/force control of uncertain constrained flexible joint robots. Mechatronics 16(2), 111–120 (2006)CrossRefGoogle Scholar
  12. 12.
    Li, Z., Ge, S.S., Adams, M., Wijesoma, W.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776–784 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)CrossRefGoogle Scholar
  14. 14.
    Levin, A.U., Narendra, K.S.: Control of nonlinear dynamical systems using neural networks. ii. observability, identification, and control. IEEE Trans. Neural Netw. 7(1), 30–42 (1996)CrossRefGoogle Scholar
  15. 15.
    Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. London, UK: World Scientific (1998)Google Scholar
  16. 16.
    Lewis, F.L., Jagannathan, S., Yeildirek, A.: Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, London (1999)Google Scholar
  17. 17.
    Wang, C., Hill, D.J.: Deterministic learning theory for identification, recognition, and control. CRC Press (2009)Google Scholar
  18. 18.
    Li, Y., Yang, C., Ge, S.S., Lee, T.H.: Adaptive output feedback nn control of a class of discrete-time MIMO nonlinear systems with unknown control directions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(2), 507–517 (2011)CrossRefGoogle Scholar
  19. 19.
    Ren, B., Ge, S.S., Su, C.-Y., Lee, T.H.: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 39(2), 431–443 (2009)CrossRefGoogle Scholar
  20. 20.
    Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, Y.-J., Chen, C.P., Wen, G.-X., Tong, S.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, Y.-J., Tong, S.-C., Wang, D., Li, T.-S., Chen, C.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear siso systems. IEEE Trans. Neural Netw. 22(8), 1328–1334 (2011)CrossRefGoogle Scholar
  23. 23.
    Dai, S.-L., Wang, C., Wang, M.: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 111–123 (2014)CrossRefGoogle Scholar
  24. 24.
    Dai, S.-L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8(34), 801–810 (2012)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Su, C.-Y.: Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1400–1413 (2013)CrossRefGoogle Scholar
  26. 26.
    Sun, F., Sun, Z., Zhu, Y., Lu, W.: Stable neuro-adaptive control for robots with the upper bound estimation on the neural approximation errors. J. Intell. & Robot. Syst. 26(1), 91–100 (1999)CrossRefGoogle Scholar
  27. 27.
    Sun, F., Sun, Z.: Stable sampled-data adaptive control of robot arms using neural networks. J. Intell. & Robot. Syst. 20(2-4), 131–155 (1997)CrossRefGoogle Scholar
  28. 28.
    He, W., Ge, S.S., How, B.V.E., Choo, Y.S.: Dynamics and Control of Mechanical Systems in Offshore Engineering (2014)Google Scholar
  29. 29.
    Selmic, R., Lewis, F.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang, C., Li, Z., Li, J.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Cybern. 43(1), 24–36 (2013)CrossRefGoogle Scholar
  31. 31.
    Cui, R., Ren, B., Ge, S.S.: Synchronised tracking control of multi-agent system with high order dynamics. IET Control Theory & Appl. 6(5), 603–614 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sanner, R.M., Slotine, J.E.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992)CrossRefGoogle Scholar
  33. 33.
    Ge, S.S., Wang, C.: Adaptive neural network control of uncertain MIMO non-linear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)CrossRefGoogle Scholar
  34. 34.
    Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control. Kluwer Academic, Boston, USA (2001)Google Scholar
  35. 35.
    Behtash, S.: Robust output tracking for nonlinear system. Int. J. Control 51, 1381–1407 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Horn, R., Johnson, C.: Matrix analysis. Cambridge University Press, Cambridge UK (1990)zbMATHGoogle Scholar
  37. 37.
    He, W., Ge, S.S.: Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance. IEEE Trans. Control Syst. Technol. 20(1), 48–58 (2012)Google Scholar
  38. 38.
    He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.-S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Ioannou, P., Sun, J.: Robust Adaptive Control. Prentice-Hall, Eaglewood Cliffs, New Jersey (1996)zbMATHGoogle Scholar
  40. 40.
    He, W., Ge, S.S., Zhang, S.: Adaptive boundary control of a flexible marine installation system. Automatica 47(12), 2728–2734 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    He, W., Zhang, S., Ge, S.S.: Robust adaptive control of a thruster assisted position mooring system. Automatica 50(7), 1843–1851 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Khalil, H.K., Systems Nonlinear. Prentice Hall, New Jersey USA (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Wei He
    • 1
    Email author
  • Shuzhi Sam Ge
    • 2
  • Yanan Li
    • 3
  • Effie Chew
    • 4
  • Yee Sien Ng
    • 5
  1. 1.Center for Robotics and School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Electrical & Computer EngineeringNational University of SingaporeDowntown CoreSingapore
  3. 3.Institute for Infocomm Research, Agency for Science, Technology and ResearchDowntown CoreSingapore
  4. 4.Division of NeurologyNational University HospitalDowntown CoreSingapore
  5. 5.Department of Rehabilitation MedicineSingapore General HospitalDowntown CoreSingapore

Personalised recommendations