Advertisement

Journal of Intelligent & Robotic Systems

, Volume 80, Supplement 1, pp 7–22 | Cite as

A Depth Space Approach for Evaluating Distance to Objects

with Application to Human-Robot Collision Avoidance
  • Fabrizio Flacco
  • Torsten Kroeger
  • Alessandro De LucaEmail author
  • Oussama Khatib
Article

Abstract

We present a novel approach to estimate the distance between a generic point in the Cartesian space and objects detected with a depth sensor. This information is crucial in many robotic applications, e.g., for collision avoidance, contact point identification, and augmented reality. The key idea is to perform all distance evaluations directly in the depth space. This allows distance estimation by considering also the frustum generated by the pixel on the depth image, which takes into account both the pixel size and the occluded points. Different techniques to aggregate distance data coming from multiple object points are proposed. We compare the Depth space approach with the commonly used Cartesian space or Configuration space approaches, showing that the presented method provides better results and faster execution times. An application to human-robot collision avoidance using a KUKA LWR IV robot and a Microsoft Kinect sensor illustrates the effectiveness of the approach.

Keywords

Depth space Depth sensor Kinect Distance Collision avoidance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10846_2014_146_MOESM1_ESM.mp4 (9 mb)
(MP4 9.03 MB)

References

  1. 1.
  2. 2.
    Cherubini, A., Passama, R., Meline, A., Crosnier, A., Fraisse, P.: Multimodal control for human-robot cooperation. In: Proceedings 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2202–2207 (2013)CrossRefGoogle Scholar
  3. 3.
    De Luca, A., Flacco, F.: Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration. In: Proceedings 4th IEEE Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 288–295 (2012)Google Scholar
  4. 4.
    Flacco, F., De Luca, A., Khatib, O.: Motion control of redundant robots under joint constraints: Saturation in the null space. In: Proceedings 2012 IEEE Int. Conf. on Robotics and Automation, pp. 285–292 (2012)Google Scholar
  5. 5.
    Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A depth space approach to human-robot collision avoidance. In: Proceedings 2012 IEEE Int. Conf. on Robotics and Automation, pp. 338–345 (2012)CrossRefGoogle Scholar
  6. 6.
    Gecks, T.: D., H.: Human-robot cooperation: Safe pick-and-place operations. In: Proceedings 2005 IEEE Int. Works. on Robot and Human Interactive Communication, pp. 549–554 (2005)Google Scholar
  7. 7.
    Haddadin, S., Belder, S., Albu-Schaeffer, A.: Dynamic motion planning for robots in partially unknown environments. In: Proceedings IFAC World Congr., pp. 6842–6850 (2011)Google Scholar
  8. 8.
    Jia, P., Ioan, S., Sachin, C., Dinesh, M.: Real-time collision detection and distance computation on point cloud sensor data. In: Proceedings 2013 IEEE Int. Conf. on Robotics and Automation, pp. 3593–3599 (2013)Google Scholar
  9. 9.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kröger, T.: Opening the door to new sensor-based robot applications — The Reflexxes Motion Libraries. In: Proceedings 2011 IEEE Int. Conf. on Robotics and Automation (ICRA Communications). Shanghai, China (2011)Google Scholar
  11. 11.
    Kröger, T., Wahl, F.M.: On-line trajectory generation: Basic concepts for instantaneous reactions to unforeseen events. IEEE Trans. Robot. 26(1), 94–111 (2010)CrossRefGoogle Scholar
  12. 12.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer Verlag (2003)Google Scholar
  13. 13.
    Meilland, M., Comport, A.: On unifying key-frame and voxel-based dense visual SLAM at large scales. In: Proceedings 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3677–3683 (2013)CrossRefGoogle Scholar
  14. 14.
    Mémoli, F., Sapiro, G.: Distance functions and geodesics on point clouds (2003)Google Scholar
  15. 15.
    Peasley, B., Birchfield, S.: Real-time obstacle detection and avoidance in the presence of specular surfaces using an active 3D sensor. In: Proceedings 2013 IEEE Works. on Robot Vision, pp. 197–202 (2013)CrossRefGoogle Scholar
  16. 16.
    Piumsomboon, T., Clark, A., Billinghurst, M.: Physically-based interaction for tabletop augmented reality using a depth-sensing camera for environment mapping. In: Proceedings 26th Int. Conf. on Image and Vision Computing New Zealand, pp. 161–166 (2011)Google Scholar
  17. 17.
    Placitelli, A., Gallo, L.: Low-cost augmented reality systems via 3D point cloud sensors. In: Proceedings 7th Int. Conf. on Signal-Image Technology and Internet-Based Systems, pp. 188–192 (2011)CrossRefGoogle Scholar
  18. 18.
    Rakprayoon, P., Ruchanurucks, M., Coundoul, A.: Kinect-based obstacle detection for manipulator. In: Proceedings 2011 IEEE/SICE Int. Symp. on System Integration, pp. 68–73 (2011)CrossRefGoogle Scholar
  19. 19.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proceedinds 2011 IEEE Int. Conf. on Robotics and Automation (ICRA Communications). Shanghai, China (2011)Google Scholar
  20. 20.
    Ryden, F., Chizeck, H.: A method for constraint-based six degree-of-freedom haptic interaction with streaming point clouds. In: Proceedings 2013 IEEE Int. Conf. on Robotics and Automation, pp. 2353–2359 (2013)CrossRefGoogle Scholar
  21. 21.
    Saveriano, M., Lee, D.: Point cloud based dynamical system modulation for reactive avoidance of convex and concave obstacles. In: Proceedings 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5380–5387 (2013)CrossRefGoogle Scholar
  22. 22.
    Schiavi, R., Flacco, F., Bicchi, A.: Integration of active and passive compliance control for safe human-robot coexistence. In: Proceedings 2009 IEEE Int. Conf. on Robotics and Automation, pp. 259–264 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE MultiMedia 19(2), 4–10 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fabrizio Flacco
    • 1
  • Torsten Kroeger
    • 2
  • Alessandro De Luca
    • 1
    Email author
  • Oussama Khatib
    • 2
  1. 1.Dipartimento di Ingegneria Informatica, Automatica e GestionaleSapienza Università di RomaRomeItaly
  2. 2.Artificial Intelligence LaboratoryStanford UniversityStanfordUSA

Personalised recommendations