Journal of Intelligent & Robotic Systems

, Volume 79, Issue 3–4, pp 417–432 | Cite as

Integrating BIM and LiDAR for Real-Time Construction Quality Control

  • Jun Wang
  • Weizhuo Sun
  • Wenchi Shou
  • Xiangyu WangEmail author
  • Changzhi Wu
  • Heap-Yih Chong
  • Yan Liu
  • Cenfei Sun


In the construction process, real-time quality control and early defects detection are still the most significant approach to reducing project schedule and cost overrun. Current approaches for quality control on construction sites are time-consuming and ineffective since they only provide data at specific locations and times to represent the work in place, which limit a quality manager’s abilities to easily identify and manage defects. The purpose of this paper is to develop an integrated system of Building Information Modelling (BIM) and Light Detection and Ranging (LiDAR) to come up with real-time onsite quality information collecting and processing for construction quality control. Three major research activities were carried out systematically, namely, literature review and investigation, system development and system evaluation. The proposed BIM and LiDAR-based construction quality control system were discussed in five sections: LiDAR-based real-time tracking system, BIM-based real-time checking system, quality control system, point cloud coordinate transformation system, and data processing system. Then, the system prototype was developed for demonstrating the functions of flight path control and real-time construction quality deviation analysis. Finally, three case studies or pilot projects were selected to evaluate the developed system. The results show that the system is able to efficiently identify potential construction defects and support real-time quality control.


BIM LiDAR Quadrotor Quality control Defect detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr. 15 (2), 124–138 (2006)CrossRefGoogle Scholar
  2. 2.
    Dong, A., Maher, M.L., Kim, M.J., Gu, N., Wang, X.: Construction defect management using a telematic digital workbench. Autom. Constr. 18 (6), 814–824 (2009)CrossRefGoogle Scholar
  3. 3.
    Patterson, L., Ledbetter, W.: The cost of quality: A management tool. Excellence in the Constructed Project, ASCE (1989)Google Scholar
  4. 4.
    Josephson, P.-E., Hammarlund, Y.: The causes and costs of defects in construction: A study of seven building projects. Autom. Constr. 8 (6), 681–687 (1999)CrossRefGoogle Scholar
  5. 5.
    Tang, P., Anil, E., Akinci, B., Huber, D.: Efficient and Effective Quality Assessment of As-Is Building Information Models and 3D Laser-Scanned Data. Computing in Civil Engineering (2011). Am. Soc. Civ. Eng., 486–493 (2011)Google Scholar
  6. 6.
    Becerik-Gerber, B., Jazizadeh, F., Li, N., Calis, G.: Application Areas and Data Requirements for BIM-Enabled Facilities Management. J. Constr. Eng. Manag. 138 (3), 431–442 (2012)CrossRefGoogle Scholar
  7. 7.
    Cheng Shuang Sun, Q. C.: BIM-Based Real-Time Monitoring of the Equipment Maintenance of Property. Appl. Mech. Mater. 226-228, 2217–2221 (2012). (Vibration, Structural Engineering and Measurement II)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Love, P.E.D., Kim, M.J., Park, C.-S., Sing, C.-P., Hou, L.: A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 34, 37–44 (2012)CrossRefGoogle Scholar
  9. 9.
    Motawa, I., Almarshad, A.: A knowledge-based BIM system for building maintenance. Autom. Constr. 29, 173–182 (2013)CrossRefGoogle Scholar
  10. 10.
    Gamba, P., Houshmand, B.: Digital surface models and building extraction: a comparison of IFSAR and LIDAR data. Geoscience and Remote Sensing. IEEE Trans. 38(4), 1959–1968 (2000)Google Scholar
  11. 11.
    Priestnall, G., Jaafar, J., Duncan, A.: Extracting urban features from LiDAR digital surface models. Comput. Environ. Urban. Syst. 24(2), 65–78 (2000)CrossRefGoogle Scholar
  12. 12.
    Rottensteiner, F., Briese, C.: Automatic generation of building models from LIDAR data and the integration of aerial images. International Archives of the Photogrammetry. Remote. Sens. Spat. Inf. Sci. ISPRS 34 (3/W13), 174–180 (2003)Google Scholar
  13. 13.
    Anil, E.B., Tang, P., Akinci, B., Huber, D.: Deviation analysis method for the assessment of the quality of the as-is Building Information Models generated from point cloud data. Autom. Constr. 35, 507–516 (2013)CrossRefGoogle Scholar
  14. 14.
    Arditi, D., Gunaydin, H.M.: Total quality management in the construction process. Int. J. Proj. Manag. 15(4), 235–243 (1997)CrossRefGoogle Scholar
  15. 15.
    Hung, R.Y.-Y., Lien, B.Y.-H., Fang, S.-C., McLean, G.N.: Knowledge as a facilitator for enhancing innovation performance through total quality management. Total Qual. Manag. 21(4), 425–438 (2010)CrossRefGoogle Scholar
  16. 16.
    Battikha, M.: QUALICON: Computer-Based System for Construction Quality Management. J. Constr. Eng. Manag. 128(2), 164–173 (2002)CrossRefGoogle Scholar
  17. 17.
    Wang, L.-C.: Enhancing construction quality inspection and management using RFID technology. Autom. Constr. 17(4), 467–479 (2008)CrossRefGoogle Scholar
  18. 18.
    Zhong, D., Cui, B., Liu, D., Tong, D.: Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam. Sci. China. Ser. E: Technol. Sci. 52(11), 3406–3412 (2009)CrossRefGoogle Scholar
  19. 19.
    Boukamp, F., Akinci, B.: Automated processing of construction specifications to support inspection and quality control. Autom. Constr. 17(1), 90–106 (2007)CrossRefGoogle Scholar
  20. 20.
    Navon, R.: Process and quality control with a video camera, for a floor-tilling robot. Autom. Constr. 10(1), 113–125 (2000)CrossRefGoogle Scholar
  21. 21.
    Navon, R.: Automated project performance control of construction projects. Autom. Constr. 14(4), 467–476 (2005)CrossRefGoogle Scholar
  22. 22.
    Leung, S.-W., Mak, S., Lee, B.L.: Using a real-time integrated communication system to monitor the progress and quality of construction works. Autom. Constr. 17(6), 749–757 (2008)CrossRefGoogle Scholar
  23. 23.
    Becerik-Gerber, B., Jazizadeh, F., Kavulya, G., Calis, G.: Assessment of target types and layouts in 3D laser scanning for registration accuracy. Autom. Constr. 20(5), 649–658 (2011)CrossRefGoogle Scholar
  24. 24.
    Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 31, 325–337 (2013)CrossRefGoogle Scholar
  25. 25.
    Brilakis, I., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J., Makhmalbaf, A.: Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. Adv. Eng. Inform. 24(4), 456–465 (2010)CrossRefGoogle Scholar
  26. 26.
    Bosche, F., Haas, C., Akinci, B.: Automated Recognition of 3D CAD Objects in Site Laser Scans for Project 3D Status Visualization and Performance Control. J. Comput. Civ. Eng. 23(6), 311–318 (2009)CrossRefGoogle Scholar
  27. 27.
    Li, S., Isele, J., Bretthauer, G.: Proposed Methodology for Generation of Building Information Model with Laserscanning. Tsinghua Sci. Technol. 13, Suppl. 1, 138–144 (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Mill, T., Alt, A., Liias, R.: Combined 3D building surveying techniques–terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes. J. Civ. Eng. Manag.(ahead-of-print), 1–10 (2013)Google Scholar
  29. 29.
    Murphy, M., McGovern, E., Pavia, S.: Historic Building Information Modelling – Adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote. Sens. 76, 89–102 (2013)Google Scholar
  30. 30.
    Bosché, F.: Plane-based registration of construction laser scans with 3D/4D building models. Adv. Eng. Inform. 26(1), 90–102 (2012)CrossRefGoogle Scholar
  31. 31.
    Tang, P., Akinci, B.: Formalization of workflows for extracting bridge surveying goals from laser-scanned data. Autom. Constr. 22, 306–319 (2012)CrossRefGoogle Scholar
  32. 32.
    Bosché, F.: Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv. Eng. Inform. 24(1), 107–118 (2010)CrossRefGoogle Scholar
  33. 33.
    Keqi, Z., Jianhua, Y., Shu-Ching, C.: Automatic Construction of Building Footprints From Airborne LIDAR Data. Geoscience and Remote Sensing. IEEE Trans. 44(9), 2523–2533 (2006)Google Scholar
  34. 34.
    Rottensteiner, F.: IEEE Comput. Graph. Appl. 23(6), 42–50 (2003)CrossRefGoogle Scholar
  35. 35.
    Awrangjeb, M., Zhang, C., Fraser, C.S.: Automatic extraction of building roofs using LIDAR data and multispectral imagery. ISPRS J. Photogramm. Remote. Sens. 83, 1–18 (2013)CrossRefGoogle Scholar
  36. 36.
    Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote. Sens. 87, 152–165 (2014)CrossRefGoogle Scholar
  37. 37.
    Palmer, T.C., Shan, J.: Comparative study on urban visualization using LIDAR data in GIS. URISA J. 14(2), 19–25 (2002)Google Scholar
  38. 38.
    Omasa, K., Hosoi, F., Uenishi, T., Shimizu, Y., Akiyama, Y.: Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing. Environ. Model. Assess. 13(4), 473–481 (2008)CrossRefGoogle Scholar
  39. 39.
    Hinks, T., Carr, H., Laefer, D.F.: Flight optimization algorithms for aerial LiDAR capture for urban infrastructure model generation. J. Comput. Civ. Eng. 23(6), 330–339 (2009)CrossRefGoogle Scholar
  40. 40.
    Blaikie, N.: Designing Social Research: The Logic of Anticipation. Polity, UK (2009)Google Scholar
  41. 41.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control. Eng. Pract. 19(10), 1195–1207 (2011)CrossRefGoogle Scholar
  42. 42.
    Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. Neural Netw., IEEE Trans. 21(1), 50–66 (2010)CrossRefGoogle Scholar
  43. 43.
    Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1-2), 127–151 (2009)CrossRefzbMATHGoogle Scholar
  44. 44.
    Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: Direct method based control system for an autonomous quadrotor. J. Intell. Robot. Syst. 60(2), 285–316 (2010)CrossRefzbMATHGoogle Scholar
  45. 45.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H\(\infty \) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control. Eng. Pract. 19(9), 1023–1036 (2011)CrossRefGoogle Scholar
  47. 47.
    Abdolhosseini, M., Zhang, Y., Rabbath, C.A.: An Efficient Model Predictive Control Scheme for an Unmanned Quadrotor Helicopter. J. Intell. Robot. Syst. 70(1-4), 27–38 (2013)CrossRefGoogle Scholar
  48. 48.
    Nagaty, A., Saeedi, S., Thibault, C., Seto, M., Li, H.: Control and Navigation Framework for Quadrotor Helicopters. J. Intell. Robot. Syst. 70(1-4), 1–12 (2012)CrossRefGoogle Scholar
  49. 49.
    Hu, W., Guo, S.: Visualization and Collaboration of On-Site Environments Based on Building Information Model for Construction Project Class. Inf. Manag. Eng., 288–295 (2011). SpringerGoogle Scholar
  50. 50.
    Wang, X.: BIM Handbook: A guide to Building Information Modeling for owners, managers, designers, engineers and contractors [Book Review]. Australasian Journal of Construction Economics and Building 12(3), 101 (2012)CrossRefGoogle Scholar
  51. 51.
    Chen, H.-T., Wu, S.-W., Hsieh, S.-H.: Visualization of CCTV coverage in public building space using BIM technology. Visualization in Engineering 1(1), 1–17 (2013)CrossRefzbMATHGoogle Scholar
  52. 52.
    Zhu, Z., Donia, S.: Spatial and visual data fusion for capturing, retrieval, and modeling of as-built building geometry and features. Visualization in Engineering 1(1), 10 (2013)CrossRefGoogle Scholar
  53. 53.
    Azhar, S., Carlton, W.A., Olsen, D., Ahmad, I.: Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 20(2), 217–224 (2011)CrossRefGoogle Scholar
  54. 54.
    Kim, H., Stumpf, A., Kim, W.: Analysis of an energy efficient building design through data mining approach. Autom. Constr. 20(1), 37–43 (2011)CrossRefGoogle Scholar
  55. 55.
    Alwisy, A., Al-Hussein, M., Al-Jibouri, S.: BIM Approach for Automated Drafting and Design for Modular Construction Manufacturing. Comput. Civ. Eng., 221–228 (2012)Google Scholar
  56. 56.
    Di Mascio, D., Wang, X.: Building Information Modelling (BIM)-Supported Cooperative Design in Sustainable Renovation Projects. Cooperative Design, Visualization, and Engineering, 205–212 (2013). SpringerGoogle Scholar
  57. 57.
    Li, H., Huang, T., Kong, C., Guo, H., Baldwin, A., Chan, N., Wong, J.: Integrating design and construction through virtual prototyping. Autom. Constr. 17(8), 915–922 (2008)CrossRefGoogle Scholar
  58. 58.
    Park, C.-S., Lee, D.-Y., Kwon, O.-S., Wang, X.: A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 33, 61–71 (2013)CrossRefGoogle Scholar
  59. 59.
    Siu, M.-F.F., Lu, M., AbouRizk, S.: Combining photogrammetry and robotic total stations to obtain dimensional measurements of temporary facilities in construction field. Visualization in Engineering 1 (1), 1–15 (2013)CrossRefGoogle Scholar
  60. 60.
    Yang, C.-E., Lin, J.J.-C., Hung, W.-H., Kang, S.-C.: Accessibility Evaluation System for Site Layout Planning-A Tractor Trailer Example. Visualization in Engineering 1(1), 12 (2013)CrossRefGoogle Scholar
  61. 61.
    Wang, Y., Wang, X., Wang, J., Yung, P., Jun, G.: Engagement of Facilities Management in Design Stage through BIM: Framework and a Case Study. Advances in Civil Engineering (2013)Google Scholar
  62. 62.
    Son, S., Park, H., Lee, K.H.: Automated laser scanning system for reverse engineering and inspection. Int. J. Mach. Tools Manuf. 42(8), 889–897 (2002)CrossRefGoogle Scholar
  63. 63.
    Kase, K., Makinouchi, A., Nakagawa, T., Suzuki, H., Kimura, F.: Shape error evaluation method of free-form surfaces. Comput. Aided Des. 31(8), 495–505 (1999)CrossRefzbMATHGoogle Scholar
  64. 64.
    Choi, W., Kurfess, T.R.: Dimensional measurement data analysis, part 1: a zone fitting algorithm. J. Manuf. Sci. Eng. 121(2), 238–245 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jun Wang
    • 1
  • Weizhuo Sun
    • 2
  • Wenchi Shou
    • 1
  • Xiangyu Wang
    • 3
    • 4
    Email author
  • Changzhi Wu
    • 1
  • Heap-Yih Chong
    • 1
  • Yan Liu
    • 5
  • Cenfei Sun
    • 5
  1. 1.Australasian Joint Research Centre for Building Information Modelling (BIM)Curtin UniversityCurtinAustralia
  2. 2.College of Management of EconomicsTianjin UniversityTianjinChina
  3. 3.Curtin-Woodside Chair Professor for Oil, Gas & LNG Construction and Project Management and Co-Director of Australasian Joint Research Centre for Building Information Modelling (BIM)Curtin UniversityCurtinAustralia
  4. 4.International Scholar, Department of Housing and Interior DesignKyung Hee UniversityKyung HeeSouth Korea
  5. 5.School of Construction Management and Real EstateChongqing UniversityChongqingChina

Personalised recommendations