Advertisement

Model-Free Control of a Hovering Flapping-Wing Microrobot

The Design Process of a Stabilizing Multiple-Input–Multiple-Output Controller

  • 736 Accesses

  • 12 Citations

Abstract

We present a model-free experimental method to find a control strategy for achieving stable flight of a dual-actuator biologically inspired flapping-wing flying microrobot during hovering. The main idea proposed in this work is the sequential tuning of parameters for an increasingly more complex strategy in order to sequentially accomplish more complex tasks: upright stable flight, straight vertical flight, and stable hovering with altitude and position control. Each term of the resulting multiple-input–multiple-output (MIMO) controller has a physical intuitive meaning and the control structure is relatively simple such that it could potentially be applied to other kinds of flapping-wing robots.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Finio, B.M.: Roll, Pitch and Yaw Torque Control for a Robotic Bee. Ph.D, Dissertation, Harvard University, Cambridge, MA (2012)

  2. 2.

    Vigoreaux, J.O.: Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Landes Bioscience & Springer, Georgetown, TX and New York, NY (2006)

  3. 3.

    Pérez-Arancibia, N.O., Chirarattananon, P., Finio, B.M., Wood, R.J.: Pitch-angle feedback control of a biologically inspired flapping-wing microrobot. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, pp. 1495–1502. Phuket Island, Thailand (2011)

  4. 4.

    Pérez-Arancibia, N.O., Ma, K.Y., Galloway, K.C., Greenberg, J.D., Wood, R.J.: First controlled vertical flight of a biologically inspired microrobot. Bioinspir. Biomim. 6(3), 036009–1–11 (2011)

  5. 5.

    Finio, B.M., Pérez-Arancibia, N.O., Wood, R.J.: System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1107–1114. San Francisco, CA (2011)

  6. 6.

    Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O: Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. J. Guid. Control. Dyn. 33(3), 724–739 (2010)

  7. 7.

    Ma, K.Y., Felton, S.M., Wood, R.J.: Design, fabrication, and modeling of the split actuator microrobotic bee. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1133–1140. Vilamoura, Algarve, Portugal (2012)

  8. 8.

    Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

  9. 9.

    Ellington, C.P.: The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Phil. Trans. R. Soc. Lond. B 305(1122), 1–15 (1984)

  10. 10.

    Alexander, D.E.: Nature’s Flyers. The Johns Hopkins University Press, Baltimore, MD (2002)

  11. 11.

    Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot 24(2), 341–347 (2008)

  12. 12.

    G. R. Spedding: The aerodynamics of flight. In: Alexander, R. McN. (eds.) Mechanics of Animal Locomotion, pp. 51–111. Springer-Verlag, Berlin & Heidelberg, Germany (1992)

  13. 13.

    Ellington, C.P.: The aerodynamics of hovering insect flight. II. morphological parameters. Phil. Trans. R. Soc. Lond. B 305(1122), 17–40 (1984)

  14. 14.

    Ellington, C.P.: The aerodynamics of hovering insect flight. VI. lift and power requirements. Phil. Trans. R. Soc. Lond. B 305(1122), 145–185 (1984)

  15. 15.

    Spedding, G.R., Lissaman, P.B.S.: Technical aspects of microscale flight systems. J. Avian Biol. 29(4), 458–468 (1998)

  16. 16.

    Pesavento, U., Wang, Z.J.: Flapping wing flight can save aerodynamic power compared to steady flight. Phys. Rev. Lett. 103(11), 118102 (2009)

  17. 17.

    Wood, R.J., Steltz, E., Fearing, R.S.: Nonlinear performance limits for high energy density piezoelectric bending actuators. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3633–3640. Barcelona, Spain (2005)

  18. 18.

    Pérez-Arancibia, N.O.,Whitney, J.P.,Wood, R.J.: Lift force control of a flapping-wing microrobot. In: Proceedings of the 2011 American Control Conference, pp. 4761–4768. San Francisco, CA (2011)

  19. 19.

    Pérez-Arancibia, N.O., Whitney, J.P., Wood, R.J.: Lift force control of flapping-wing microrobots using adaptive feedforward schemes. IEEE/ASME Trans. Mechatron 18(1), 155–168 (2013)

  20. 20.

    Whitney, J.P., Wood, R.J.: Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197–220 (2010)

  21. 21.

    Whitney, J.P.: Design and Performance of Insect-Scale Flapping-Wing Vehicles. Ph.D. Dissertation, Harvard University, Cambridge, MA (2012)

  22. 22.

    Lehmann, F.-O., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (Drosophila spp.) J. Exp. Biol. 201(3), 385–401 (1998)

  23. 23.

    Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59(1), 169–230 (1973)

  24. 24.

    Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia, PA (2004)

  25. 25.

    Pérez-Arancibia, N.O., Duhamel, P.-E. J., Ma, K.Y., Wood, R.J.: Model-Free Control of a Hovering Flapping-Wing Flying Microrobot. [Online]. Available: http://micro.seas.harvard.edu/JINT2014/S1.mp4 (2014)

Download references

Author information

Correspondence to Néstor O. Pérez-Arancibia.

Additional information

N. O. Pérez-Arancibia and P.-E. J. Duhamel contributed equally to this work.

This work was supported in part by the National Science Foundation (award number CCF-0926148) and the Wyss Institute for Biologically Inspired Engineering. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 36.6 MB)

(MP4 36.6 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez-Arancibia, N.O., Duhamel, P.J., Ma, K.Y. et al. Model-Free Control of a Hovering Flapping-Wing Microrobot. J Intell Robot Syst 77, 95–111 (2015) doi:10.1007/s10846-014-0096-8

Download citation

Keywords

  • Microrobotics
  • Flapping-wing flight
  • Real-time control
  • Experimental robotics