Journal of Intelligent & Robotic Systems

, Volume 79, Issue 2, pp 295–321 | Cite as

Enhanced Backstepping Controller Design with Application to Autonomous Quadrotor Unmanned Aerial Vehicle

  • Mohd Ariffanan Mohd Basri
  • Abdul Rashid Husain
  • Kumeresan A. Danapalasingam


Quadrotor unmanned aerial vehicle (UAV) is an underactuated multi-input and multi-output (MIMO) system which has nonlinear dynamic behavior such as high coupling degree and unknown nonlinearities. It is a great challenge to design a quadrotor control system due to these features. In this paper, the contribution is focused on the backstepping-based robust control design of the quadrotor UAV. Firstly, the dynamic model of the aerial vehicle is mathematically formulated. Then, a robust controller is designed for the stabilization and tracking control of the vehicle. The developed robust control system comprises a backstepping and a proportional-derivative (PD) controller. Backstepping is a recursive design methodology that uses Lyapunov theorem which can guarantee the stability of the nominal model system, while PD control is used to attenuate the effects caused by system uncertainties. For the problem of determining the backstepping control parameters, particle swarm optimization (PSO) algorithm has been employed. In addition, the genetic algorithm (GA) technique is also adopted for the purpose of performance comparison with PSO scheme. Finally, the designed controller is experimentally evaluated on a quadrotor simulation environment to demonstrate the effectiveness and merits of the theoretical development.


Quadrotor UAV Robust control Backstepping Particle swarm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salazar-Cruz, S., Escareno, J., Lara, D., Lozano, R.: Embedded control system for a four-rotor UAV. Int. J. Adap. Control Sig. Process. 21(2-3), 189– 204 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an Indoor micro quadrotor. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4393–4398 (2004)Google Scholar
  3. 3.
    Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst. Mag. 25(6), 45–55 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Salih, A.L., Moghavvemi, M., Mohamed, H.A.F., Gaeid, K.S.: Modelling and PID controller design for a quadrotor unmanned air vehicle. In: IEEE International Conference on Automation Quality and Testing Robotics (AQTR), pp. 1-5, 28-30 May 2010 (2010)Google Scholar
  5. 5.
    Santos, M., López, V., Morata, F.: Intelligent fuzzy controller of a quadrotor. In: IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 141–146 (2010)Google Scholar
  6. 6.
    Xu, R., Ozguner, U.: Sliding mode control of a quadrotor helicopter. In: IEEE Conference on Decision and Control, pp. 4957–4962 (2006)Google Scholar
  7. 7.
    Madani, T., Benallegue, A.: Backstepping Control for a Quadrotor Helicopter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260, 9–15 Oct 2006 (2006)Google Scholar
  8. 8.
    Bouadi, H., Bouchoucha, M., Tadjine, M.: Modelling and stabilizing control laws design based on backstepping for an UAV type-quadrotor. In: Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles, pp. 245–250, Toulouse (2007)Google Scholar
  9. 9.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: Backstepping/nonlinear H∞control for path tracking of a quadrotor unmanned aerial vehicle. In: American Control Conference, pp. 3356–3361, 11–13 June 2008 (2008)Google Scholar
  10. 10.
    Regula, G., Lantos, B.: Backstepping based control design with state estimation and path tracking to an indoor quadrotor helicopter. Electr. Eng. Comput. Sci. 53(3-4), 151–161 (2011)Google Scholar
  11. 11.
    Kaloust, J., Ham, C., Siehling, J., Jongekryg, E., Han, Q.: Nonlinear robust control design for levitation and propulsion of a maglev system. IEE Proc. Control Theory Appl. 151(4), 460–464 (2004)CrossRefGoogle Scholar
  12. 12.
    Diao, C., Xian, B., Yin, Q., Zeng, W., Li, H., Yang, Y.: A nonlinear adaptive control approach for quadrotor UAVs. In: Proceedings of the IEEE 8th Asian Control Conference (ASCC), pp. 223–228 (2011)Google Scholar
  13. 13.
    Mohammadi, M., Shahri, A.M., Boroujeni, Z.: Modeling and Adaptive Tracking Control of a Quadrotor UAV. Int. J. Intell. Mechatron. Robot 2(4), 58–81 (2012)CrossRefGoogle Scholar
  14. 14.
    De Monte, P., Lohmann, B.: Position trajectory tracking of a quadrotor helicopter based on L1 adaptive control. In: European Control Conference (ECC), pp. 3346–3353, 17–19 Jul 2013 (2013)Google Scholar
  15. 15.
    De Queiroz, M.S., Dawson, D.M.: Nonlinear control of active magnetic bearings: a backstepping approach. IEEE Trans. Control Syst. Technol. 4(5), 545–552 (1996)CrossRefGoogle Scholar
  16. 16.
    Kim, K.S., Kim, Y.: Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Trans. Control Syst. Technol. 11(6), 822–829 (2003)CrossRefGoogle Scholar
  17. 17.
    Karimi, A., Feliachi, A.: Decentralized adaptive backstepping control of electric power systems. Electr. Power Syst. Res. 78(3), 484–493 (2008)CrossRefGoogle Scholar
  18. 18.
    Xie, Q., Han, Z., Kang, H.: Adaptive backstepping control for hybrid excitation synchronous machine with uncertain parameters. Expert Syst. Appl. 37(10), 7280–7284 (2010)CrossRefGoogle Scholar
  19. 19.
    Ursu, I., Ursu, F., Popescu, F.: Backstepping design for controlling electrohydraulic servos. J. Frankl. Inst. 343(1), 94–110 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, Q., Xu, L., Zhang, A.: Adaptive backstepping trajectory tracking control of robot manipulator. J. Frankl. Inst. 349(3), 1087–1105 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hamida, M.A., Glumineau, A., De Leon, J.: Robust integral backstepping control for sensorless IPM synchronous motor controller. J. Frankl. Inst. 349(5), 1734– 1757 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and adaptive control design, Vol. 222. Wiley New York (1995)Google Scholar
  23. 23.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  24. 24.
    Abido, M.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17(3), 406–413 (2002)CrossRefGoogle Scholar
  25. 25.
    Rini, D.P., Shamsuddin, S.M., Yuhaniz, S.S.: Particle swarm optimization: Technique, system and challenges. Int. J. Comput. Appl. 14(1), 19–27 (2011)Google Scholar
  26. 26.
    Marinaki, M., Marinakis, Y., Stavroulakis, G.E.: Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures. Struct. Multidiscip. Optim. 43(1), 29– 42 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Witkowska, A, Smierzchalski, R.: Nonlinear backstepping ship course controller. Int. J. Autom. Comput. 6(3), 277–284 (2009)CrossRefGoogle Scholar
  28. 28.
    Sahab, A.R., Modabbernia, M.R.: Back stepping method for a single-link flexible-joint manipulator using genetic algorithm. Int. J. Innov. Comput. Inf. Control 7(7 B), 4161–4170 (2011)Google Scholar
  29. 29.
    Hassan, R., Cohanim, B., De Weck, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: Proceedings of the 1st AIAA multidisciplinary design optimization specialist conference (2005)Google Scholar
  30. 30.
    Lalitha, M.P., Reddy, V.V., Usha, V.: Optimal DG placement for minimum real power loss in radial distribution systems using PSO. J. Theor. Appl. Inf. Technol. 13(2), 107–116 (2010)Google Scholar
  31. 31.
    Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 84–88 (2000)Google Scholar
  32. 32.
    Allaoua, B., Gasbaoui, B., Mebarki, B.: Setting up PID DC motor speed control alteration parameters using particle swarm optimization strategy. Leonardo Electron. J. Pract. Technol. 14, 19–32 (2009)Google Scholar
  33. 33.
    Voos, H.: Nonlinear control of a quadrotor Micro-UAV using Feedback-Linearization. In: IEEE International Conference on Mechatronics, pp. 1–6 (2009)Google Scholar
  34. 34.
    Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Optimization. In: Proceedings of the 7th International Conference on Evolutionary Programming, pp. 611–616 (1998)Google Scholar
  35. 35.
    Waslander, S.L., Wang, C.: Wind disturbance estimation and rejection for quadrotor position control. In: AIAA Infotech@Aerospace conference and AIAA unmanned…Unlimited Conference (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mohd Ariffanan Mohd Basri
    • 1
  • Abdul Rashid Husain
    • 1
  • Kumeresan A. Danapalasingam
    • 1
  1. 1.Department of Control and Mechatronics, Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations