Journal of Intelligent & Robotic Systems

, Volume 78, Issue 2, pp 257–289 | Cite as

Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators

  • Konstantinos Andrianesis
  • Anthony TzesEmail author


In this research paper, non-conventional actuation technology, based on shape memory alloys, is employed for the development of an innovative low-cost five-fingered prosthetic hand. By exploiting the unique properties of these alloys, a compact, silent and modular actuation system is implemented and integrated in a lightweight and anthropomorphic rapid-prototyped hand chassis. A tendon-driven underactuated mechanism provides the necessary dexterity while keeping the mechanical and control complexity of the device low. Tactile sensors are integrated in the fingertips improving the overall hand control. Embedded custom-made electronics for hand interfacing and control are also presented and analyzed. For the position control of each digit, a novel resistance feedback control scheme is devised and implemented. The functionality and performance of the developed hand is demonstrated in grasp experiments with common objects.When compared to the current most advanced commercial devices, the technology applied in this prototype provides a series of improvements in terms of size, weight, and noise, which will enable upper limb amputees to carry out their basic daily tasks more comfortably.


Upper limb prosthetics Multifingered hands Underactuated robots Smart actuators Shape memory alloys Resistance feedback control 

Mathematics Subject Classifications (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPG 24.5 MB)


  1. 1.
    Rosa, A.D.L., Walker, G.R.L., Goldsmith, J.B., Elias, J.H., Godden, M.P., Greenhill, R.M.: Robotic hand. US Patent 2011/0040408 A1Google Scholar
  2. 2.
    Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G., Siegwart, R.: The hand of the DLR hand arm system: Designed for interaction, Vol. 31 (2012)Google Scholar
  3. 3.
    Bridgwater, L.B., Ihrke, C.A., Diftler, M.A., Abdallah, M.E., Radford, N.A., Rogers, J.M., Yayathi, S., Askew, R.S., Linn, D.M.: The Robonaut 2 hand - designed to do work with tools. In: 2012 IEEE International Conference on Robotics and Automation (ICRA) Saint Paul, pp. 3425–3430. Minnesota (2012)Google Scholar
  4. 4.
    Kyberd, P.J., Gow, D., Chappell, P.H.: Research and the future of myoelectric prosthetics. In: Muzumdar, A (ed.) Prostheses, Powered Upper Limb, pp 175-190. Springer, Berlin Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Pons, J.L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S., Moorleghem, W.V.: The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects. Autonom. Robots 16, 143–163 (2004)CrossRefGoogle Scholar
  6. 6.
    Kargov, A., Ivlev, O., Pylatiuk, C., Asfour, T., Schulz, S., Gräser, A., Dillmann, R., Bretthauer, G.: Applications of a fluidic artificial hand in the field of rehabilitation. In: Kommu, S.S. (eds.) Rehabilitation Robotics, p. 648. Itech Education and Publishing, Vienna (2007)CrossRefGoogle Scholar
  7. 7.
    Biddiss, E., Beaton, D., Chau, T.: Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Tech. 2(6), 346–357 (2007)CrossRefGoogle Scholar
  8. 8.
    Pylatiuk, C., Schulz, S., Doderlein, L.: Results of an internet survey of myoelectric prothetic hand users. Prosthetics Orthot. Int. 31(4), 362–370 (2007)CrossRefGoogle Scholar
  9. 9.
    Dechev, N., Cleghorn, W.L., Naumann, S.: Thumb design of an experimental prosthetic hand. In: International Symposium On Robotics and Automation, pp. 7–12. Monterrey (2000)Google Scholar
  10. 10.
    Touch Bionics, Inc.: i-Limb Ultra Revolution data sheetGoogle Scholar
  11. 11.
    Cipriani, C., Controzzi, M., Carrozza, M.C.: The SmartHand transradial prosthesis. J. Neuro Eng. Rehab. 8(29), 1–13 (2011)Google Scholar
  12. 12.
    Evans, C.O., Perry, N.C., Van Der Merwe, D.A., Violette, K.D., Coulter, S.M., Doyon, T.A., Blumberg, J.R.D.: Arm prosthetic device. US Patent 2011/0257765 A1Google Scholar
  13. 13.
    Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight anthropomorphic hand. In: 2001 IEEE International Conference on Robotics and Automation (ICRA), vol. 2433, pp. 2437–2441. Seoul (2001)Google Scholar
  14. 14.
    Cura, V.O.D., Cunha, F.L., Aguiar, M.L., Cliquet, A. Jr: Study of the different types of actuators and mechanisms for upper limb prostheses. Artif. Organs 27(6), 507–516 (2003). doi: 10.1046/j.1525-1594.2003.07000.x CrossRefGoogle Scholar
  15. 15.
    Love, L.J., Lind, R.F., Jansen, J.F.: Mesofluidic actuation for articulated finger and hand prosthetics. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). St. Louis (2009)Google Scholar
  16. 16.
    Kumar, P.K., Lagoudas, D.C.: Introduction to shape memory alloys. In: Lagoudas, D.C. (eds.) Shape Memory Alloy Modelling and Engineering Applications, pp. 1–51. Springer, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Mavroidis, C., Pfeiffer, C., Mosley, M.J.: Conventional actuators, shape memory alloys, and electrorheological fluids. In: Bar-Cohen, Y. (ed.) Automation, Miniature Robotics & Sensors for Non-Destructive Testing & Evaluation. pp. 189–214. The American Society for Nondestructive Testing, Inc. (ASNT) (2000)Google Scholar
  18. 18.
    DeLaurentis, K.J., Mavroidis, C.: Mechanical design of a shape memory alloy actuated prosthetic hand. Tech Health Care 10(1), 91–106 (2002)Google Scholar
  19. 19.
    DeLaurentis, K.J., Mavroidis, C.: Rapid fabrication of a non-assembly robotic hand. Assem Autom 24(4), 394–405 (2004)CrossRefGoogle Scholar
  20. 20.
    Maeno, T., Hino, T.: Miniature five-fingered robot hand driven by shape memory alloy actuators. In: 12th IASTED International Conference, pp. 174–179. Honolulu (2006)Google Scholar
  21. 21.
    Cho, K.-J., Rosmarin, J., Asada, H.: SBC hand: a lightweight robotic hand with an SMA actuator array implementing C-segmentation. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 921–926 (2007)Google Scholar
  22. 22.
    Jung, S., Bae, J., Moon, I.: Lightweight prosthetic hand with five fingers using SMA actuator. In: 11th International Conference on Control, Automation and Systems (ICCAS) Gyeonggi-do, pp. 1797–1800. Korea (South) (2011)Google Scholar
  23. 23.
    Lee, J.H., Okamoto, S., Matsubara, S.: Development of multi-fingered prosthetic hand using shape memory alloy type artificial muscle. Comput. Technol. Appl. 3(7), 477–484 (2012)Google Scholar
  24. 24.
    Bundhoo, V.: Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, Thesis, University of Victoria (2009)Google Scholar
  25. 25.
    Saether, O.F.: Flexinol as actuator for a humanoid finger-possibilities and challenges. Thesis, University of Oslo (2008)Google Scholar
  26. 26.
    Lan, C.-C., Yang, Y.-N.: An analytical design method for a shape memory alloy wire actuated compliant finger. In: ASME 2008 International Design Engineering Technical Conferences (IDETC) & Computers and Information in Engineering Conference (CIE), vol. 3–6, pp. 1–10. Brooklyn (2008)Google Scholar
  27. 27.
    Ahmed, M.A., Taher, M.F., Metwalli, S.M.: Shape memory alloy actuator system optimization for new hand prostheses World Academy of Science. Eng. Technol. 61(188), 1021–1026 (2012)Google Scholar
  28. 28.
    Loh, C.S., Yokoi, H., Arai, T.: New shape memory alloy actuator: Design and application in the prosthetic hand. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Shanghai (2005)Google Scholar
  29. 29.
    Yang, K., Wang, Y.: Design, drive and control of a novel SMA-actuated humanoid flexible gripper. J. Mech. Sci. Technol. 22, 895–904 (2008)CrossRefGoogle Scholar
  30. 30.
    Price, A.D., Jnifene, A., Naguib, H.E.: Design and control of a shape memory alloy based dexterous robot hand. Smart Mater. Struct. 16(4), 1401–1414 (2007)CrossRefGoogle Scholar
  31. 31.
    Dilibal, S., Guner, E., Akturk, N.: Three-finger SMA robot hand and its practical analysis. Robotica 20, 175–180 (2002). doi: 10.1017/S0263574701003757 CrossRefGoogle Scholar
  32. 32.
    Andrianesis, K., Tzes, A., Kolyvas, E., Koveos, Y.: Biomimetic actuation and control of an anthropomorphic finger. Int. Rev. Mech. Eng. (IREME) 2(1), 163–171 (2008)Google Scholar
  33. 33.
    Andrianesis, K., Tzes, A.: Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. In: 2nd IEEE RAS/EMBS International Conference Biomedical Robotics and Biomechatronics (BioRob), pp. 517–522. Scottsdale (2008)Google Scholar
  34. 34.
    Andrianesis, K., Koveos, Y., Nikolakopoulos, G., Tzes, A.: Experimental study of a shape memory alloy actuation system for a novel prosthetic hand. In: Cismasiu, C. (ed.) Shape Memory Alloys, pp. 81-106. InTech (2010)Google Scholar
  35. 35.
    Andrianesis, K., Tzes, A.: Design of an innovative prosthetic hand with compact shape memory alloy actuators. In: 21st Medit. Conference Control and Automation (MED), Platanias-Chania, Crete (2013)Google Scholar
  36. 36.
    Jones, L.A., Lederman, S.J.: Human hand function. Oxford University Press, Inc., New York (2006)CrossRefGoogle Scholar
  37. 37.
    Banks, J.L.: Design and control of an anthropomorphic robotic finger with multi-point tactile sensation. Thesis, Massachusetts Institute of Technology (2001)Google Scholar
  38. 38.
    Hollister, A., Buford, W.L., Myers, L.M., Giurintano, D.J., Novick, A.: The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10(3), 454–460 (1992)CrossRefGoogle Scholar
  39. 39.
    LaViola, J.J. Jr.: A survey of hand posture and gesture recognition techniques and technology. In: vol. CS-99-11. Brown University, Providence (1999)Google Scholar
  40. 40.
    Feix, T.: Anthropomorphic hand optimization based on a latent space analysis, Thesis, Technical University of Vienna (2011)Google Scholar
  41. 41.
    Henderson, A., Pehoski, C.: Hand function in the child: Foundations for remediation. Mosby, St. Louis, Missouri (2006)Google Scholar
  42. 42.
    NASA: Anthropometry and biomechanics. In: Man-systems integration standards, vol. 1. vol. 3 (1995)Google Scholar
  43. 43.
    Weir, R.F., Sensinger, J.W.: The design of artificial arms and hands for prosthetic applications. In: Kutz, M. (ed.) Biomedical Engineering and Design Handbook, pp. 537–598. McGraw-Hill, New York (2009)Google Scholar
  44. 44.
    Sangole, A.P., Levin, M.F.: Arches of the hand in reach to grasp. J. Biomech. 41(4), 829–837 (2008)CrossRefGoogle Scholar
  45. 45.
    Gosselin, C., Pelletier, F., Laliberte, T.: An anthropomorphic underactuated robotic hand with 15 Dofs and a single actuator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 19–23. Pasadena (2008)Google Scholar
  46. 46.
    Birglen, L., Laliberté, T., Gosselin, C.: Design and control of the Laval underactuated hands. In: Underactuated Robotic Hands. Springer Tracts in Advanced Robotics, vol. 40, pp. 171–207. Berlin Heidelberg, Springer (2008)Google Scholar
  47. 47.
    Birglen, L., Laliberté, T., Gosselin, C.: Grasping vs. manipulating. In: Underactuated Robotic Hands, vol. 40, pp. 7–31. Springer Berlin, Heidelberg, Berlin (2008)CrossRefGoogle Scholar
  48. 48.
    Buchholz, B., Armstrong, T.J., Goldstein, S.A.: Anthropometric data for describing the kinematics of the human hand. Ergonomics 35(3), 261–273 (1992). doi: 10.1080/00140139208967812 CrossRefGoogle Scholar
  49. 49.
    Gómez, G., Hernandez, A., Hotz, P.E.: An adaptive neural controller for a tendon driven robotic hand. In: Arai, T. (ed.) 9th International Conference on Intelligent Autonomous Systems (IAS), pp. 298-307. Tokyo, IOS Press (2006)Google Scholar
  50. 50.
    Palm, W.: Rapid prototyping primer. In: vol. 2/4/2010. Penn State Learning Factory (1998)Google Scholar
  51. 51.
    Martin, T.B., Ambrose, R.O., Diftler, M.A., Platt, R. Jr., Butzer, M.J.: Tactile gloves for autonomous grasping with the NASA/DARPA Robonaut. In: 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 1712, pp. 1713–1718. New OrleansGoogle Scholar
  52. 52.
    Evanczuk, S.: Fundamentals of temperature-sensing devices (2011)Google Scholar
  53. 53.
    Mohd Jani, J., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56(0), 1078–1113 (2014). doi: 10.1016/j.matdes.2013.11.084 CrossRefGoogle Scholar
  54. 54.
    In: Smith, D.G., Michael, J.W., Bowker, J.H. (eds.) : Atlas of Amputations and Limb Deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons (2004)Google Scholar
  55. 55.
    In: Muzumdar, A. (ed.) : Powered Upper Limb Prostheses: Control, Implementation and Clinical Application, 1st edn. Springer, New York (2004)Google Scholar
  56. 56.
    Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., Hunter, I.W.: Artificial muscle technology: Physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004). doi: 10.1109/joe.2004.833135 CrossRefGoogle Scholar
  57. 57.
    Uustal, H., Baerga, E.: Prosthetics and orthotics. In: Cuccurullo, S.J. (ed.) Physical Medicine and Rehabilitation Board Review. Demos Medical Publishing, New York (2004)Google Scholar
  58. 58.
    Dynalloy, Inc.: Technical Characteristics of Flexinol Actuator Wires (2010)Google Scholar
  59. 59.
    Abolfathi, P.P.: Development of an Instrumented and Powered Exoskeleton for the Rehabilitation of the Hand, Thesis, University of Sydney (2007)Google Scholar
  60. 60.
    MacGregor, R.: Shape memory alloy actuators and control methods. US Patent 6,574,958 (2003)Google Scholar
  61. 61.
    Belter, J.T., Dollar, A.M.: Performance characteristics of anthropomorphic prosthetic hands. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), ETH Zurich, pp. 921–927. Switzerland (2011)Google Scholar
  62. 62.
    Teh, Y.H., Featherstone, R.: An architecture for fast and accurate control of shape memory alloy actuators. Int. J. Robot. Res. 27(5), 595–611 (2008). doi: 10.1177/0278364908090951 CrossRefGoogle Scholar
  63. 63.
    Ma, N., Song, G., Lee, H.-J.: Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct. 13(4), 777–783 (2004). doi: 10.1088/0964-1726/13/4/015 CrossRefGoogle Scholar
  64. 64.
    Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S., Thakor, N.V.: A brain-computer interface with vibrotactile biofeedback for haptic information. J. NeuroEngineering Rehabil. 4(40) (2007)Google Scholar
  65. 65.
    Davalli, A., Sacchetti, R., Fanin, S., Avanzolini, G., Urbano, E.: Biofeedback for upper limb myoelectric prostheses. Technol. Disabil. 13, 161–172 (2000)Google Scholar
  66. 66.
    Engeberg, E.D., Meek, S.: Enhanced visual feedback for slip prevention with a prosthetic hand. Prosthetics Orthot. Int. 36(4), 423–429 (2012). doi: 10.1177/0309364612440077 CrossRefGoogle Scholar
  67. 67.
    Sapsanis, C., Georgoulas, G., Tzes, A., Lymberopoulos, D.: Improving EMG based Classification of basic hand movements using EMD. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5754–6757. OsakaGoogle Scholar
  68. 68.
    Lake, C., Dodson, R.: Progressive upper limb pros- thetics. Phys. Med. Rehabil. Clinics N. Am. 17(1), 49–72 (2006)CrossRefGoogle Scholar
  69. 69.
    Cocaud, C., Price, A., Jnifene, A., Naguib, H.: Position control of an experimental robotic arm driven by artificial muscles based on shape memory alloys. Int. J. Mech. Mater. Des. 3(3), 223–236 (2006)CrossRefGoogle Scholar
  70. 70.
    Ashrafiuon, H., Eshraghi, M., Elahinia, M.H.: Position control of a three-link shape memory alloy actuated robot. J. Intell. Mater. Syst. Struct. 17(5), 381–392 (2006)CrossRefGoogle Scholar
  71. 71.
    Rezaeeian, A., Yousefi-Koma, A., Shasti, B., Doosthoseini, A.: ANFIS modeling and feedforward control of shape memory alloy actuators, Vol. 2 (2008)Google Scholar
  72. 72.
    Cho, K.-J., Asada, H.: Architecture design of a multi-axis cellular actuator array using segmented binary control of shape memory alloy. IEEE Trans. Robot. 22(4), 831–843 (2006)CrossRefGoogle Scholar
  73. 73.
    Zecca, M., Roccella, S., Cappiello, G., Ito, K., Imanishi, K., Miwa, H., Carrozza, M.C., Dario, P., Takanishi, A.: From the human hand to a humanoid hand: Biologically-inspired approach for the development of Robocasa Hand #1. In: Zielinska, T., Zielinski, C. (eds.) 16th CISM-IFToMM RoManSy Symposium, pp. 287–294. Warsaw, SpringerGoogle Scholar
  74. 74.
    Pikul, J.H., Gang Zhang, H., Cho, J., Braun, P.V., King, W.P.: High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013). doi: 10.1038/ncomms2747 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of PatrasRioGreece

Personalised recommendations