Journal of Intelligent & Robotic Systems

, Volume 76, Issue 2, pp 353–381 | Cite as

Mechanism and Convergence Analysis of a Multi-Robot Swarm Approach Based on Natural Selection

  • Micael S. Couceiro
  • Fernando M. L. Martins
  • Rui P. Rocha
  • Nuno M. F. Ferreira


The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization (PSO) using natural selection, or survival-of-the-fittest, to enhance the ability to escape from local optima. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots. Therefore, the RDPSO decreases the amount of required information exchange among robots, and is scalable to large populations of robots. This paper presents a stability analysis of the RDPSO to better understand the relationship between the algorithm parameters and the robot’s convergence. Moreover, the analysis of the RDPSO is further extended for real robot constraints (e.g., robot dynamics, obstacles and communication constraints) and experimental assessment with physical robots. The optimal parameters are evaluated in groups of physical robots and a larger population of simulated mobile robots for different target distributions within larger scenarios. Experimental results show that robots are able to converge regardless of the RDPSO parameters within the defined attraction domain. However, a more conservative parametrization presents a significant influence on the convergence time. To further evaluate the herein proposed approach, the RDPSO is further compared with four state-of-the-art swarm robotic alternatives under simulation. It is observed that the RDPSO algorithm provably converges to the optimal solution faster and more accurately than the other approaches.


Swarm robotics Natural selection Convergence analysis Robot constraints Parameterization Source localization 

Mathematics Subject Classifications (2010)

39A30 70E60 65L20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  2. 2.
    Kennedy, J., Eberhart, R.: A new optimizer using particle swarm theory. In: Proceedings of the IEEE 6th International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya (1999)Google Scholar
  3. 3.
    Tillett, J., Rao, T.M., Sahin, F., Rao, R., Brockport, S.: Darwinian particle swarm optimization. In: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, pp. 1474–1487 (2005)Google Scholar
  4. 4.
    Liu, Y., Nejat, G.: Robotic urban search and rescue: a survey from the control perspective. J. Intell. Robot. Syst. 72(2), 147–165 (2013)Google Scholar
  5. 5.
    Parker, L.E.: Multiple mobile robot systems. Springer Handbook of Robotics, pp. 921–941 (2008)Google Scholar
  6. 6.
    Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F.: A novel multi-robot exploration approach based on particle swarm optimization algorithms. In: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR2011, pp. 327–332. Kyoto (2011)Google Scholar
  7. 7.
    Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F.: Ensuring ad hoc connectivity in distributed search with robotic darwinian swarms. In: Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR2011, pp. 284–289. Kyoto (2011)Google Scholar
  8. 8.
    Couceiro, M.S., Martins, F.M.L., Rocha, R.P., Ferreira, N.M.F.: Analysis and parameter adjustment of the RDPSO - towards an understanding of robotic network dynamic partitioning based on Darwin’s theory. Int. Math. Forum, Hikari Ltd. 7(32), 1587–1601 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Couceiro, M.S., Ferreira, N.M.F., Machado, J.A.T.: Fractional order darwinian particle swarm optimization. In: Proceedings of the 3th Symposium on Fractional Signals and Systems, FSS’2011, Coimbra (2011)Google Scholar
  10. 10.
    Abd-El-Wahed, W.F., Mousa, A.A., M, A.E.-S.: Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems. J. Comput. Appl. Math. 235(5) (2011)Google Scholar
  11. 11.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58-73 (2002)CrossRefGoogle Scholar
  12. 12.
    Kadirkamanathan, V., Selvarajah, H., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 10(3), 245–255 (2006)CrossRefGoogle Scholar
  13. 13.
    Rapaic, M.R., Kanovic, Z., Jelicic, Z.D.: A theoretical and empirical analysis of convergence related particle swarm optimization. WSEAS Trans. Syst. Control 4(11), 541–550 (2009)Google Scholar
  14. 14.
    Pugh, J., Martinoli, A.: Multi-robot learning with particle swarm optimization. In: Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (2006)Google Scholar
  15. 15.
    Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (2007)Google Scholar
  16. 16.
    Saikishan, D., Prasanna, K.: Multiple robot co-ordination using particle swarm optimisation and bacteria foraging algorithm. Department of Mechanical Engineering, National Institute of Technology BTech thesis (2010)Google Scholar
  17. 17.
    Hereford, J., Siebold, M.: Multi-robot search using a physically-embedded particle swarm optimization. Int. J. Comput. Intell. Res. 4(2), 197–209 (2008)CrossRefGoogle Scholar
  18. 18.
    Jatmiko, W., Sekiyama, K., Fukuda, T.: A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement. IEEE Comput. Intell. Mag. 2(2), 37–51 (2007)CrossRefGoogle Scholar
  19. 19.
    Podlubny, I.: Fractional differential equations, 198th edn, vol. 198. Academic, San Diego, California (1999)Google Scholar
  20. 20.
    Couceiro, M.S., Luz, J.M.A., Figueiredo, C.M., Ferreira, N.M.F.: Modeling and Control of Biologically Inspired Flying Robots. Journal of Robotica - Press, Cambridge University (2011)Google Scholar
  21. 21.
    Couceiro, M.S., Martins, F.M.L., Rocha, R.P., Ferreira, N.M.F.: Introducing the fractional order robotic Darwinian PSO. In: Proceedings of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences - ICNPAA’2012, Vienna (2012)Google Scholar
  22. 22.
    Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G., Galhano, A.F.: Some applications of fractional calculus in engineering. Hindawi Publ. Corp. Math. Probl. Eng. 1(34), 1-34 (2010)Google Scholar
  23. 23.
    Couceiro, M.S., Figueiredo, C.M., Luz, J.M.A., Ferreira, N.M.F., Rocha, R.P.: A low-cost educational platform for swarm robotics. International Journal of Robots, Education and Art (2011)Google Scholar
  24. 24.
    Williams, R.L., Wu, J.: Dynamic obstacle avoidance for an omnidirectional mobile robot. J. Robot. 2010(901365), 14 (2010)Google Scholar
  25. 25.
    Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: a modular architecture for event based control of complex robots. IEEE/ASME Trans. Mechatron. (99), 1-9 (2009)Google Scholar
  26. 26.
    Crispin, Y.J.: Cooperative control of multiple swarms of mobile robots with communication constraints, optimization and cooperative control. In: Hirsch, M. J. et al. (eds.) ch. 381, pp. 207–220, Berlin, Heidelberg: Springer (2009)Google Scholar
  27. 27.
    Tewolde, G.S., Wu, C., Wang, Y., Sheng, W.: Distributed multi-robot work load partition in manufacturing automation. 4th IEEE Conference on Automation Science and Engineering, Key Bridge Marriott, Washington DC (2008)Google Scholar
  28. 28.
    Hahn, H.K., Schoenberger, K.: The ordered distribution of natural numbers on the square root spiral. The Journal of Business 2007, 1–35 (2007)Google Scholar
  29. 29.
    Kulkarni, R.V., Venayagamoorthy, G.K.: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst., Man Cybernet. (40)6 (2010)Google Scholar
  30. 30.
    Burchardt, T.: Social exclusion: concepts and evidence. Breadline Europe: the measurement of poverty (2000)Google Scholar
  31. 31.
    Craighead, J.J., Sumner, J.S., Mitchell, J.A.: The Grizzly Bears of Yellowstone: Their Ecology in the Yellowstone Ecosystem, pp. 1959–1992. Island Press, Washington, D.C. (1995)Google Scholar
  32. 32.
    Zhang, K., Collins, E.G., Barbu, A.: An efficient stochastic clustering auction for heterogeneous robotic collaborative teams. J. Intell. Robot. Syst. 72(3–4), 541–558 (2013)Google Scholar
  33. 33.
    Elaydi, S.: An Introduction to Difference Equations, 3rd edn, pp. 257–258. Springer, Science and Business Media, Inc., (2005)Google Scholar
  34. 34.
    Barnett, S.: Polynomials and Linear Control Systems. Marcel Dekker Inc., New York (1983)zbMATHGoogle Scholar
  35. 35.
    Yasuda, K., Iwasaki, N., Ueno, G., Aiyoshi, E.: Parti1629 cle swarm optimization: a numerical stability analysis and parameter adjustment based on swarm activity. vol. 3, pp. 642-659. EEJ Transactions on Electrical and Electronic Engineering, Wiley InterScience. Wiley InterScience (2008)Google Scholar
  36. 36.
    Wakasa, Y., Tanaka, K., Nishimura, Y.: Control-theoretic analysis of exploitation and exploration of the PSO algorithm. In: IEEE International Symposium on Computer-Aided Control System Design, IEEE Multi-Conference on Systems and Control, Yokohama (2010)Google Scholar
  37. 37.
    Beni, G.: From swarm intelligence to swarm robotics. In: Proceedings of the Swarm Robotics Workshop pp. 1–9, Heidelberg (2004)Google Scholar
  38. 38.
    Molga, M., Smutnicki, C.: Test functions for optimization needs. In: Xin-She Yang (ed) Engineering Optimization: An Introduction with Metaheuristic Applications (2005)Google Scholar
  39. 39.
    Marques, L., Nunes, U., Almeida, A.d.: Particle swarm-based olfactory guided search. Auton. Robot 20(3), 277–287 (2006)CrossRefGoogle Scholar
  40. 40.
    Couceiro, M.S., Ferreira, N.M.F., Rocha, R.P., Martins, F.M.L., Clemente, F.: Statistical significance analysis of the R-DPSO - towards an understanding of the relationship between the population of robots and the maximum communication distance. In: Proceedings of the International Symposium on Computational Intelligence for Engineering Systems (ISCIES’2011), Coimbra (2011)Google Scholar
  41. 41.
    Maroco, J.: Análise Estatística com utilização do SPSS. Lisboa: Edições Silabo (2010)Google Scholar
  42. 42.
    Pallant, J.: SPSS survival manual, kindle edition ed., 4th edn. Open University Press (2011)Google Scholar
  43. 43.
    Pedrosa, A.C., Gama, S.M.A.: Introdução Computacional à Probabilidade e Estatística. Porto Editora, Portugal (2004)Google Scholar
  44. 44.
    Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Robot. Res. IJRR 29(14), 1743–1760 (2010)CrossRefGoogle Scholar
  45. 45.
    Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium. Honolulu, HI (2007)Google Scholar
  46. 46.
    Hereford, J.M., Siebold, M.A.: Bio-inspired search strategies for robot swarms. In: Swarm Robotics, From Biology to Robotics. pp. 1–27 (2010)Google Scholar
  47. 47.
    Krishnanand, K.N., Ghose, D.: A glowworm swarm optimization based multi-robot system for signal source localization. In: Design and Control of Intelligent Robotic Systems - Studies in Computational Intelligence, pp. 49–68 (2009)Google Scholar
  48. 48.
    Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3(2), 87–124 (2009)CrossRefGoogle Scholar
  49. 49.
    Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Autom. Control 48(4), 692–697 (2003)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybernet. 34(1), 539–557 (2004)CrossRefGoogle Scholar
  51. 51.
    Couceiro, M.S., Portugal, D., Rocha, R.P.: A collective robotic architecture in search and rescue scenarios. In: Proceedings of the 28th Symposium On Applied Computing (SAC2013). Coimbra (2013)Google Scholar
  52. 52.
    Rocha, R.P., Ferreira, F., Dias, J.: Multi-robot complete exploration using hill climbing and topological recovery. In: Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’2008), Nice (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Micael S. Couceiro
    • 1
  • Fernando M. L. Martins
    • 2
  • Rui P. Rocha
    • 1
  • Nuno M. F. Ferreira
    • 3
  1. 1.Institute of Systems and RoboticsUniversity of CoimbraCoimbraPortugal
  2. 2.Instituto de Telecomunicações (Covilhã), RoboCorpCoimbra College of EducationCoimbraPortugal
  3. 3.RoboCorp, Electrical Engineering DepartmentEngineering Institute of CoimbraCoimbraPortugal

Personalised recommendations