Journal of Intelligent & Robotic Systems

, Volume 79, Issue 1, pp 55–72

6-DoF Low Dimensionality SLAM (L-SLAM)

Article

Abstract

In this paper, a new Simultaneous Localization and Mapping (SLAM) method is proposed, called L-SLAM, which is a Low dimension version of the FastSLAM family algorithms. L-SLAM uses a particle filter of lower dimensionality than FastSLAM and achieves better accuracy than FastSLAM 1.0 and 2.0 for a small number of particles. L-SLAM is suitable for high dimensionality problems which exhibit high computational complexity like 6-dof 3D SLAM. Unlike FastSLAM algorithms which use Extended Kalman Filters (EKF), the L-SLAM algorithm updates the particles using linear Kalman filters. A planar SLAM problem of a rear drive car-like robot as well as a three dimensional SLAM problem with 6-dof of an airplane robot is presented. Experimental results based on real case scenarios using the Car Park and Victoria Park datasets are presented for the planar SLAM. Also results based on simulated environment and real case scenario of the Koblenz datasets are presented and compared with the three dimensional version of the FastSLAM 1.0 and 2.0. The experimental results demonstrate the superiority of the proposed method over FastSLAM 1.0 and 2.0.

Keywords

SLAM L-SLAM FastSLAM Dimensionality reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augenstein, S., Rock, S.: Simultaneous estimation of target pose and 3-d shape using the fastslam algorithm. In: Proceedings of AIAA GNC 2009 (2009)Google Scholar
  2. 2.
    Briers, M., Doucet, A., Maskell, S.: Smoothing algorithms for state–space models. Ann. Inst. Stat. Math. 62(1), 61–89 (2010). doi:10.1007/s10463-009-0236-2 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (slam) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)CrossRefGoogle Scholar
  4. 4.
    Doucet, A., de Freitas, N., Murphy, K.P., Russell, S.J.: Rao-blackwellised particle filtering for dynamic Bayesian networks. In: UAI, pp. 176–183 (2000)Google Scholar
  5. 5.
    Kwak, N., Kim, G.W., Lee, B.H.: A new compensation technique based on analysis of resampling process in fastslam. Robotica 26(2), 205–217 (2008). doi:10.1017/S0263574707003773 CrossRefGoogle Scholar
  6. 6.
    Montemerlo, M., Thrun, S.: Simultaneous localization and mapping with unknown data association using fastslam. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA ’03, vol. 2, pp. 1985–1991 (2003). doi:10.1109/ROBOT.2003.1241885
  7. 7.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: AAAI/IAAI, pp. 593–598 (2002)Google Scholar
  8. 8.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: IJCAI, pp. 1151–1156 (2003)Google Scholar
  9. 9.
    Montemerlo, M., Thrun, S., Siciliano, B.: FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics, vol. 27. Springer, Berlin (2007)Google Scholar
  10. 10.
    Mullane, J., Vo, B.N., Adams, M., Vo, B.T.: A random finite set approach to bayesian slam. In: IEEE trans. robotics, vol. 27, pp. 268–282 (2011)Google Scholar
  11. 11.
    Mullane, J., Vo, B.N., Adams, M., Vo, B.T.: Random Finite Sets for Robotic Mapping and Slam: Tracts in Advanced Robotics. Springer (2011)Google Scholar
  12. 12.
    Nieto, J., Guivant, J., Nebot, E., Thrun, S.: Real time data association for fastslam. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA ’03, vol. 1, pp. 412–418 (2003)Google Scholar
  13. 13.
    Nüchter, A.: 3D robotic mapping: the simultaneous localization and mapping problem with six degrees of freedom. In: STAR: Springer tracts in advanced robotics, vol. 52. Springer, (2009). http://www.loc.gov/catdir/enhancements/fy1102/2008941001-d.html
  14. 14.
    Petridis, V., Zikos, N.: L-slam: reduced dimensionality fastslam algorithms. In: WCCI, pp. 2510–2516, Barcelona (2010)Google Scholar
  15. 15.
    Rauch, H.E., Striebel, C.T., Tung, F.: Maximum likelihood estimates of linear dynamic systems. J. Am. Inst. Aeronaut. Astronaut. 3(8), 1445–1450 (1965)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Särkkä, S., Vehtari, A., Lampinen, J.: Time series prediction by kalman smoother with cross validated noise density. In: IJCNN, pp. 1653–1658. (2004) doi:10.1109/IJCNN.2004.1380200
  17. 17.
    Sarkka, S., Vehtari, A., Lampinen, J.: Cats benchmark time series prediction by kalman smoother with cross- validated noise density. Neurocomputer 70(13–15), 2331–2341 (2007). doi:10.1016/j.neucom.2005.12.132 CrossRefGoogle Scholar
  18. 18.
    Sasiadek, J., Monjazeb, A., Necsulescu, D.: Navigation of an autonomous mobile robot using ekf-slam and fastslam. In: 2008 16th Mediterranean conference on Control and automation, pp. 517–522. (2008) doi:10.1109/MED.2008.4602213
  19. 19.
    Smith, R., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1986)Google Scholar
  20. 20.
    Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. In: Proceedings of the 4th International Symposium on Robotics Research, pp. 467–474. MIT Press, Cambridge (1988)Google Scholar
  21. 21.
    Thrun, S., Montemerlo, M., Koller, D., Wegbreit, B., Nieto, J., Nebot, E.: Fastslam: An efficient solution to the simultaneous localization and mapping problem with unknown data association. J. Mach. Learn. Res. (2004)Google Scholar
  22. 22.
    Zikos, N., Petridis, V.: L-slam: reduced dimensionality fastslam with unknown data association. In: ICRA, pp. 4074–4079. Shanghai (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations