Journal of Intelligent & Robotic Systems

, Volume 74, Issue 1–2, pp 129–145 | Cite as

A Survey and Categorization of Small Low-Cost Unmanned Aerial Vehicle System Identification

  • Nathan V. Hoffer
  • Calvin Coopmans
  • Austin M. Jensen
  • YangQuan Chen
Article

Abstract

Remote sensing has traditionally be done with satellites and manned aircraft. While these methods can yield useful scientific data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) can bridge the gap for personal remote sensing for scientific data. Precision aerial imagery and sensor data requires an accurate dynamics model of the vehicle for controller development. One method of developing a dynamics model is system identification (system ID). The purpose of this paper is to provide a survey and categorization of current methods and applications of system ID for small low-cost UAVs. This paper also provides background information on the process of system ID with in-depth discussion on practical implementation for UAVs. This survey divides the summaries of system ID research into five UAV groups: helicopter, fixed-wing, multirotor, flapping-wing, and lighter-than-air. The research literature is tabulated into five corresponding UAV groups for further research.

Keywords

System identification UAV Helicopter Fixed-wing Multirotor Flapping-wing  Lighter-than-air Least squares Levenberg Marquardt Kalman filter EKF UKF  Observer/Kalman identification Autoregressive exogenous inputs ARMAX Box Jenkins  Prediction-error method Output-error method Neural network Fuzzy identification Time domain  Frequency domain State-space Subspace CIFER Personal remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbeel, P., Ganapathi, V., Ng, A.: Learning vehicular dynamics, with application to modeling helicopters. Adv. Neural Inf. Process. Syst. 18, 1–8 (2006)Google Scholar
  2. 2.
    Abbeel, P., Coates, A., Quingley, M., Ng, A.Y.: An application of reinforcement learning to aerobatic helicopter flight. Adv. Neural Inf. Process. Syst. 19, 1–8 (2007)Google Scholar
  3. 3.
    Adiprawita, W., Ahmad, A., Sembiring, J.: Automated flight test and system identification for rotary wing small aerial platform using frequency responses analysis. J. Bionic Eng. 4(4), 7 (2007)CrossRefGoogle Scholar
  4. 4.
    Ahmad, S., Shaheed, M., Chipperfield, A., Tokhi, M.: Non-linear modelling of a one-degree-of-freedom twin-rotor multi-input multi-output system using radial basis function networks. Proc. Inst. Mech. Eng. 216(4), 197–208 (2002)Google Scholar
  5. 5.
    Atkins, E., Miller, R., Plet, T., Shaw, K., Ribbens, W., Washabugh, D.: Solus: an autonomous aircraft for flight control and trajectory planning research. In: Proceedings of the 1998 American Control Conference (1998)Google Scholar
  6. 6.
    Bhandari, S., Colgren, R., Lederbogen, P., Kowalchuk, S.: Six-dof dynamic modeling and flight testing of a uav helicopter. In: Proceeding of the AIAA Modeling and Simulation Technologies Conference and Exhibit, pp. 992–1008 (2005)Google Scholar
  7. 7.
    Bottasso, C., Leonello, D., Maffezzoli, A., Riccardi, F.: A procedure for the identification of the inertial properties of small-size uavs. In: XX AIDAA Congress (2009)Google Scholar
  8. 8.
    Brunke, S., Campbell, M.: Estimation architecture for future autonomous vehicles. In: Proceedings of the 2002 American Control Conference, vol. 2, pp. 1108–1114 (2002)Google Scholar
  9. 9.
    Budiyono, A., Yoon, K., Daniel, F.: Integrated identification modeling of rotorcraft-based unmanned aerial vehicle. In: Proceedings of the 17th Mediterranean Conference on Control and Automation, pp. 898–903 (2009)Google Scholar
  10. 10.
    Cai, G., Chen, B., Peng, K.: Modeling and control of the yaw channel of a uav helicopter. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)CrossRefGoogle Scholar
  11. 11.
    Cai, G., Chen, B.M., Lee, T.H.: An overview on development of miniature unmanned rotorcraft systems. Front. Elect. Electron. Eng. 5(1), 1–14 (2009)Google Scholar
  12. 12.
    Carnduff, S.: System Identification of Unmanned Aerial Vehicles. Ph.D. thesis, Cranfield University (2008)Google Scholar
  13. 13.
    Chao, H., Luo, Y., Di, L., Chen, Y.Q.: Roll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control. Eng. Pract. 18(7), 761–772 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Wen, C., Dou, H., Sun, M.: Iterative learning identification of aerodynamic drag curve from tracking radar measurements. Control. Eng. Pract. 5(11), 1543–1553 (1997)CrossRefGoogle Scholar
  15. 15.
    Cho, J., Principe, J., Erdogmus, D., Motter, M.: Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map. IEEE Trans. Neural Netw. 17(2), 445–460 (2006)CrossRefGoogle Scholar
  16. 16.
    Chowdhary, G., Jategaonkar, R.: Aerodynamic parameter estimation from flight data applying extended and unscented kalman filter. In: Proceedings of the 2006 AIAA Atmospheric Flight Mechanics Conference (2006)Google Scholar
  17. 17.
    Chowdhary, G., Lorenz, S.: Control of a vtol uav via online parameter estimation. In: Proceeding of the AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1–15 (2005)Google Scholar
  18. 18.
    Cory, R., Tedrake, R.: Experiments in fixed-wing uav perching. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2008)Google Scholar
  19. 19.
    Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2011)Google Scholar
  20. 20.
    Debusk, W.M., Chowdhary, G., Johnson, E.N.: Real-time system identification of a small multi-engine aircraft. In: Proceedings of the AIAA Atmospheric Flight Mechanics Conference, pp. 1–15 (2009)Google Scholar
  21. 21.
    Derafa, L., Madani, T., Benallegue, A.: Dynamic modelling and experimental identification of four rotors helicopter parameters. In: Proceedings of the IEEE International Conference on Industrial Technology, pp. 1834–1839 (2006)Google Scholar
  22. 22.
    Dongwon, J., Panagiotis, T.: Modeling and hardware-in-the-loop simulation for a small unmanned aerial vehicle. In: Proceedings of the 2007 AIAA Conference (2007)Google Scholar
  23. 23.
    Dorobantu, A., Murch, A., Mettler, B., Balas, G.: Frequency domain system identification for a small, low-cost, fixed-wing uav. In: Proceedings of the 2011 AIAA Guidance, Navigation, and Control Conference (2011)Google Scholar
  24. 24.
    Elfes, A., Montgomery, J., Hall, J., Joshi, S., Payne, J., Bergh, C.: Autonomous flight control for a titan exploration aerobot. In: Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2005)Google Scholar
  25. 25.
    Engel, A., Teichert, B.: The photogrammetric potential of low-cost uavs in forestry and agriculture. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 1(B1), 1207–1214 (2008)Google Scholar
  26. 26.
    Evans, J., Elkaim, G., Parkinson, B.: System identification of an autonomous aircraft using gps. In: Proceedings of the ION Global Positioning System Conference, pp. 1065–1071 (1997)Google Scholar
  27. 27.
    Farrell, J.A., Polycarpou, M.M.: Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, 1st edn. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  28. 28.
    Finio, B.M., Perez-Arancibia, N.O., Wood, R.J.: System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In: Proceedings of the 2011 IEEERSJ International Conference on Intelligent Robots and Systems, pp. 1107–1114 (2011)Google Scholar
  29. 29.
    Garratt, M., Ahmed, B., Pota, H.: Platform enhancements and system identification for control of an unmanned helicopter. In: Proceedings of the 9th International Conference on Control Automation Robotics and Vision (2006)Google Scholar
  30. 30.
    Hansen, S., Blanke, M.: Control surface fault diagnosis with specified detection probability - real event experiences. In: Proceedings of the 2013 Internatinal Conference on Unmanned Aircraft Systems, pp. 526–531 (2013)Google Scholar
  31. 31.
    Hashimoto, S., Ogawa, T., Adachi, S., Tan, A., Miyamori, G.: System identification experiments on a large-scale unmanned helicopter for autonomous flight. In: Proceedings of the 2000 IEEE International Conference on Control Applications Conference, pp. 850–855 (2000)Google Scholar
  32. 32.
    Heredia, G., Ollero, A.: Sensor fault detection in small autonomous helicopters using observer/kalman filter identification. In: Proceedings of the 2009 IEEE International Conference on Mechatronics, pp. 1–6 (2009)Google Scholar
  33. 33.
    Hoburg, W., Tedrake, R.: System identification of post stall aerodynamics for uav perching. In: Proceedings of the AIAA Infotech@ Aerospace Conference, pp. 1–9 (2009)Google Scholar
  34. 34.
    Hoffer, N.V., Coopmans, C., Jensen, A.M., Chen, Y.: Small low-cost unmanned aerial vehicle system identification: a survey and categorization. In: Proceeding of the International Conference on Unmanned Aircraft Systems, pp. 897–904 (2013)Google Scholar
  35. 35.
    Hu, C., Huang, X., Hu, J., Zhu, J.: System identification of a small uav’s speeding up process before take-off. In: Proceedings of the 2004 5th Asian Cotnrol Conference. O’Reilly (2004)Google Scholar
  36. 36.
    Isermann, R., Münchhof, M.: Identification of Dynamic Systems: An Introduction with Applications. Springer, New York (2010)Google Scholar
  37. 37.
    Ivler, C., Tischler, M.: System identification modeling for flight control design. In: Proceedings of the RAeS Rotorcraft Handling-Qualities Conference, vol. 47, p. 50 (2008)Google Scholar
  38. 38.
    Jensen, A., Hardy, T., Mckee, M., Chen, Y.Q.: Using a multispectral autonomous unmanned aerial remote sensing platform (aggieair) for riparian and wetlands applications. In: Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 3413–3416 (2011)Google Scholar
  39. 39.
    Jung, D., Levy, E., Zhou, D., Fink, R., Moshe, J., Earl, A., Tsiotras, P.: Design and development of a low-cost test-bed for undergraduate education in uavs. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2739–2744 (2005)Google Scholar
  40. 40.
    Kallapur, A., Ali, S., Anavatti, S.: Application of extended kalman filter towards uav identification. Auton. Robots Agents 207, 199–207 (2007)CrossRefGoogle Scholar
  41. 41.
    Kallapur, A., Samal, M., Vishwas, P., Sreenatha, A., Garratt, M.: A ukf-nn framework for system identification of small unmanned aerial vehicles. In: Proceedings of the 2008 11th International IEEE Conference on Intelligent Transportation Systems, pp. 1021–1026 (2008)Google Scholar
  42. 42.
    Keesman, K.J.: System Identification: An Introduction. Springer, London (2011)CrossRefGoogle Scholar
  43. 43.
    Kim, B., Chang, Y., Lee, M.: System identification and 6-dof hovering controller design of unmanned model helicopter. JSME Int. J. Ser. C 49(4), 1048–1057 (2006)CrossRefGoogle Scholar
  44. 44.
    Kim, H., Shim, D.: A flight control system for aerial robots: algorithms and experiments. Control. Eng. Pract. 11(12), 1389–1400 (2003)CrossRefGoogle Scholar
  45. 45.
    Ko, J., Klein, D., Fox, D., Haehnel, D.: Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 10–14 (2007)Google Scholar
  46. 46.
    Koos, S., Mouret, J., Doncieux, S.: Automatic system identification based on coevolution of models and tests. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 560–567 (2009)Google Scholar
  47. 47.
    Lei, X., Du, Y.: A linear domain system identification for small unmanned aerial rotorcraft based on adaptive genetic algorithm. J. Bionic Eng. 7(2), 142–149 (2010)CrossRefGoogle Scholar
  48. 48.
    Li, Z., Hoffer, N., Stark, B., Chen, Y.: Design, modeling and validation of a t-tail unmanned aerial vehicle. J. Intell. Robot. Syst. 69(1–4), 91–107 (2012)Google Scholar
  49. 49.
    Liu, M., Egan, G., Ge, Y.: Identification of attitude flight dynamics for an unconventional uav. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3243–3248 (2006)Google Scholar
  50. 50.
    Ljung, L.: System Identification-Theory for User, 2nd edn. Prentice Hall, Upper Saddle River (1999)Google Scholar
  51. 51.
    Luo, Y., Chao, H., Di, L., Chen, Y.: Lateral directional fractional order (pi) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET Control Theory Appl. 5(18), 2156 (2011)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Manai, M., Desbiens, A., Gagnon, E.: Identification of a uav and design of a hardware-in-the-loop system for nonlinear control purposes. In: AIAA Guidance, Navigation, and Control Conference, vol. 8, pp. 6441–6446 (2005)Google Scholar
  53. 53.
    Mettler, B., Tischler, M.B., Kanade, T.: System identification of small-size unmanned helicopter dynamics. In: Annual Forum Proceedings of the American Helicopter Society, vol. 2, pp. 1706–1717 (1999)Google Scholar
  54. 54.
    Mettler, B., Kanade, T., Tischler, M.: System Identification Modeling of a Model-Scale Helicopter, pp. 1–25. Carnegie Mellon University, The Robotics Institute (2000)Google Scholar
  55. 55.
    Morris, J., Van Nieuwstadt, M., Bendotti, P.: Identification and control of a model helicopter in hover. In: Proceedings of the American Control Conference, pp. 1238–1242 (1994)Google Scholar
  56. 56.
    Morris, S., Holden, M.: Design of micro air vehicles and flight test validation. In: Proceedings of the Fixed, Flapping and Rotary Wing Vehicles at Very Low Reynolds Numbers Conference, pp. 153–176 (2000)Google Scholar
  57. 57.
    Muhammad, H., Thien, H.P., Mulyanto, T.: Total leasts squares estimation of aerodynamic parameter of micro coaxial helicopter from flight data. Int. J. Basic Appl. Sci. 12(2), 44–52 (2012)Google Scholar
  58. 58.
    Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. Exp. Robot. IX, 363–372 (2006)Google Scholar
  59. 59.
    Nino, J., Mitrache, F., Cosyn, P., Dekeyser, R.: Model identification of a micro air vehicle. J. Bionic Eng. 4(4), 227–236 (2007)CrossRefGoogle Scholar
  60. 60.
    Nong, Y., Qi, Z., Lin, D.: System identification of a small unmanned aerial vehicle based on time and frequency domain technologies. In: Proceedings of the 2011 9th World Congress on Intelligent Control and Automation, pp. 711–718 (2011)Google Scholar
  61. 61.
    Park, W.J., Kim, E.T., Song, Y.K., Ko, B.J.: A study on the real-time parameter estimation of durumi-ii for control surface fault using flight test data (longitudinal motion). Int. J. Control. Autom. Syst. 5(4), 410–418 (2007)Google Scholar
  62. 62.
    Paw, Y.C., Balas, G.J.: Development and application of an integrated framework for small uav flight control development. Mechatronics 21(5), 789–802 (2011)CrossRefGoogle Scholar
  63. 63.
    Phang, S., Cai, C., Chen, B., Lee, T.: Design and mathematical modeling of a 4-standard-propeller (4sp) quadrotor. In: Prodeedings of the 10th World Congress on Intelligent Control and Automation, pp. 3270–3275 (2012)Google Scholar
  64. 64.
    Phillips, W.F.: Mechanics of Flight, 2nd edn. Wiley, New York (2009)Google Scholar
  65. 65.
    Pounds, P., Mahony, R., Corke, P.: System identification and control of an aerobot drive system. In: Proceedings of the 2007 Information, Decision and Control Conference, pp. 154–159 (2007)Google Scholar
  66. 66.
    Putro, I., Budiyono, A., Yoon, K., Kim, D.: Modeling of unmanned small scale rotorcraft based on neural network identification. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, pp. 1938–1943 (2009)Google Scholar
  67. 67.
    Puttige, V., Anavatti, S.: Real-time neural network based online identification technique for a uav platform. In: Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation, and International Conference on Intelligent Agents, Web Tehcnologies and Internet Commerce (2006)Google Scholar
  68. 68.
    Puttige, V., Anavatti, S.: Comparison of real-time online and offline neural network models for a uav. In: Proceedings of the International Joint Conference on Neural Networks, pp. 412–417 (2007)Google Scholar
  69. 69.
    Puttige, V., Anavatti, S.: Real-time multi-network based identification with dynamic selection implemented for a low cost uav. In: Proceedings of the 2007 IEEE International Conference on Systems Man and Cybernetics, pp. 759–764 (2007)Google Scholar
  70. 70.
    Puttige, V., Anavatti, S.: Real-time system identification of unmanned aerial vehicles: a multi-network approach. J. Comput. 3(7), 31–38 (2008)Google Scholar
  71. 71.
    Rango, A., Berte, A.L., Steele, C., Herrick, J.E., Bestelmeyer, B., Schmugge, T., Roanhorse, A., Jenkins, V.: Using unmanned aerial vehicles for rangelands: future potentials. Environ. Pract. 68, 159–168 (2006)Google Scholar
  72. 72.
    Rao, J.J., Gong, Z.B., Jiang, Z.: GA-based flight motion model parameter identification of a subminiature fixed-wing unmanned aerial vehicle. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 3549–3554 (2007)Google Scholar
  73. 73.
    Rimal, B., Putro, I., Budiyono, A., Min, D., Choi, E.: System identification of nn-based model reference control of ruav during hover. In: Artificial Neural Networks - Industrial and Control Engineering Applications, InTech, pp. 395–420 (2011)Google Scholar
  74. 74.
    Salman, S., Puttige, V., Anavatti, S.: Real-time validation and comparison of fuzzy identification and state-space identification for a uav platform. In: Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 2138–2143 (2006)Google Scholar
  75. 75.
    Salman, S., Sreenatha, A., Choi, J.: Attitude dynamics identification of unmanned aircraft vehicle. Int. J. Control. Autom. Syst. 4(6), 782–787 (2006)Google Scholar
  76. 76.
    Samal, M., Anavatti, S., Garratt, M.: Neural network based system identification for autonomous flight of an eagle helicopter. In: Proceedings of the 17th World Congress of the International Federation of Automatic Control, pp. 7421–7426 (2008)Google Scholar
  77. 77.
    Samal, M., Anavatti, S., Garratt, M.: Real-time neural network based identification of a rotary-wing uav dynamics for autonomous flight. In: Proceedings of the 2009 IEEE International Conference on Industrial Technology. IEEE (2009)Google Scholar
  78. 78.
    Schafroth, D., Bermes, C., Bouabdallah, S., Seigwart, R.: Modeling and system identification of the mufly micro helicopter. J. Intell. Robot. Syst. 57(1–4), 27–47 (2010)CrossRefMATHGoogle Scholar
  79. 79.
    Schafroth, D., Bermes, C., Bouabdallah, S., Siegwart, R.: Modeling, system identification and robust control of a coaxial micro helicopter. Control. Eng. Pract. 18(7), 700–711 (2010)CrossRefGoogle Scholar
  80. 80.
    Shim, D.H., Kim, H., Sastry, S.: Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification. In: Proceedings of the 2000 IEEE International Conference on Control Applications Conference Proceedings, vol. 2000(2), pp. 808–813 (2000)Google Scholar
  81. 81.
    Teo, R., Jang, J., Tomlin, C.: Automated multiple uav flight-the stanford dragonfly uav program. In: Proceedings of the 43rd IEEE Conference on Decision and Control, vol. 4, pp. 4268–4273 (2004)Google Scholar
  82. 82.
    Tischler, M.B., Remple, R.K.: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples. AIAA, Inc., Virginia (2006)Google Scholar
  83. 83.
    Vélez, C., Agudelo, A., Alvarez, J.: Modeling, simulation and rapid prototyping of an unmanned mini-helicopter. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference (2006)Google Scholar
  84. 84.
    Wu, H., Sun, D., Zhou, Z.: Model identification of a micro air vehicle in loitering flight based on attitude performance evaluation. IEEE Trans. Robot. 20(4), 702–712 (2004)CrossRefGoogle Scholar
  85. 85.
    Yuan, W., Katupitiya, J.: A time-domain grey-box system identification procedure for scale model helicopters. In: Proceedings of the 2011 Australasian Conference on Robotics and Automation (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nathan V. Hoffer
    • 1
  • Calvin Coopmans
    • 1
  • Austin M. Jensen
    • 2
  • YangQuan Chen
    • 3
  1. 1.Center for Self-Organizing and Intelligent Systems (CSOIS)Utah State UniversityLoganUSA
  2. 2.AggieAir Flying Circus (AAFC), Utah Water Research LaboratoryUtah State UniversityLoganUSA
  3. 3.Mechatronics, Embedded Systems and Automation (MESA) LabUniversity of California, MercedMercedUSA

Personalised recommendations