Journal of Intelligent & Robotic Systems

, Volume 74, Issue 1–2, pp 193–207 | Cite as

Battery State-Of-Charge Based Altitude Controller for Small, Low Cost Multirotor Unmanned Aerial Vehicles

  • Michal Podhradský
  • Calvin Coopmans
  • Austin Jensen


Small unmanned aerial vehicles (UAV) are typically driven by Lithium polymer batteries. The batteries have their own dynamics, which changes during discharge. Classical approaches to altitude control assume a time-invariant system and therefore fail. Adaptive controllers require an identified system model which is often unavailable. Battery dynamics can be characterized and used for a battery model-based controller. This controller is useful in situations when no feedback from actuators (such as RPM or thrust) is available. After measuring the battery dynamics for two distinct types of batteries, a controller is designed and experimentally verified, showing a consistent performance during entire discharge test and a consequent flight verification.


Unmanned aerial vehicles UAV Vertical take-off and landing VTOL Hexarotor Multirotor Altitude control Battery monitoring and modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allegro A4935 Datasheet: Automotive 3-phase mosfet driver. Accessed 28 July 2013
  2. 2.
    Paparazzi: The free autopilot (an opensource project). Accessed 14 July 2013
  3. 3.
    Utah Water Research Laboratory (web pages). Accessed 20 July 2013
  4. 4.
    Valer, P., et al.: Battery Management Systems: Universal State-of-Charge Indication for Battery-Powered Applications. Philips Research Book. Springer Netherlands (2008)Google Scholar
  5. 5.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory Appl. 6(12), 1812–1827 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Barton, J.: Fundamentals of small unmanned aircraft flight. Johns Hopkins APL Tech. Dig. 31(2), 142 (2012)MathSciNetGoogle Scholar
  7. 7.
    Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 153–158. IEEE (2007)Google Scholar
  8. 8.
    Bouadi, H., Simoes Cunha, S., Drouin, A., Mora-Camino, F.: Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking. In: 12th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 449–455 (2011)Google Scholar
  9. 9.
    Chen, M., Rincon-Mora, G.: Accurate electrical battery model capable of predicting runtime and i-v performance. IEEE Trans. Energy Convers. 21(2), 504–511 (2006)CrossRefGoogle Scholar
  10. 10.
    Cherian, A., Andersh, J., Morellas, V., Papanikolopoulos, N., Mettler, B.: Autonomous altitude estimation of a UAV using a single onboard camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 3900–3905 (2009)Google Scholar
  11. 11.
    Cheron, C., Dennis, A., Semerjyan, V., Chen, Y.: A multifunctional HIL testbed for multirotor VTOL UAV actuator. In: Proc. of the IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), 2012, pp. 44–48 (2010)Google Scholar
  12. 12.
    Coopmans, C., Di, L., Jensen, A., Dennis, A.A., Chen, Y.: Improved architecture designs for a low cost personal remote sensing platform: flight control and safety. In: Proc. of the ASME Conference, 2011, pp. 937–943 (2011)Google Scholar
  13. 13.
    Coopmans, C., Han, Y.: Aggieair: an integrated and effective small multi-uav command, control and data collection architecture. In: Proc. of the 5th ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications (MESA09), 2009, pp. 1–7 (2009)Google Scholar
  14. 14.
    Coopmans, C., Stark, B., Coffin, C.: A payload verification and management framework for small UAV-based personal remote sensing systems. In: Proc. of the 5th International Symposium on Resilient Control Systems (ISRCS), 2012, pp. 184–189 (2012)Google Scholar
  15. 15.
    Eynard, D., Vasseur, P., Demonceaux, C., Fremont, V.: UAV altitude estimation by mixed stereoscopic vision. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 646–651 (2010)Google Scholar
  16. 16.
    Hu, Y., Yurkovich, S.: Battery state of charge estimation in automotive applications using LPV techniques. In: Proc. of the American Control Conference (ACC), 2010 (2010)Google Scholar
  17. 17.
    Jensen, A., Chen, Y., McKee, M., Hardy, T., Barfuss, S.: AggieAir—a low-cost autonomous multispectral remote sensing platform: new developments and applications. In: Proc. of the Geoscience and Remote Sensing Symposium (IGARSS), 2009, vol. 4, pp. 995–998 (2009)Google Scholar
  18. 18.
    Kim, I.S.: The novel state of charge estimation method for lithium battery using sliding mode observer. J. Power Sources 163(1), 584–590 (2006)CrossRefGoogle Scholar
  19. 19.
    Knauff, M., Dafis, C., Niebur, D., Kwatny, H., Nwankpa, C.: Simulink model for hybrid power system test-bed. In: IEEE Electric Ship Technologies Symposium, 2007. ESTS ’07, pp. 421–427 (2007)Google Scholar
  20. 20.
    Min, B.C., Hong, J.H., Matson, E.: Adaptive robust control (ARC) for an altitude control of a quadrotor type UAV carrying an unknown payloads. In: 2011 11th International Conference on Control, Automation and Systems (ICCAS), pp. 1147–1151 (2011)Google Scholar
  21. 21.
    Mukhopadhyay, S., Zhang, F.: Adaptive detection of terminal voltage collapses for li-ion batteries. In: Proc. of the 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 4799–4804. Maui, Hawai, USA (2012)Google Scholar
  22. 22.
    Podhradsky, M., Bone, J., Jensen, A., Coopmans, C.: Smal low-cost unmanned aerial vehicle lithium-polymer battery monitoring system. In: Proc. of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2013)Google Scholar
  23. 23.
    Pounds, P., Mahony, R.: Design principles of large quadrotors for practical applications. In: IEEE International Conference on Robotics and Automation, 2009. ICRA ’09, pp. 3265–3270 (2009)Google Scholar
  24. 24.
    Pounds, P., Mahony, R., Corke, P.: System identification and control of an aerobot drive system. In: Information, Decision and Control, 2007. IDC ’07, pp. 154–159 (2007)Google Scholar
  25. 25.
    Prasad, G., Sree Ramya, N., Prasad, P.V.N., Tulasi Ram Das, G.: Modelling and simulation analysis of the brushless DC motor by using MATLAB. Int. J. Innov. Tech. Exp. Eng. 1(5), 27–31 (2012)Google Scholar
  26. 26.
    Stowers, J., Hayes, M., Bainbridge-Smith, A.: Altitude control of a quadrotor helicopter using depth map from microsoft kinect sensor. In: International Conference on Mechatronics (ICM), pp. 358–362 (2011)Google Scholar
  27. 27.
    Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular slam based navigation for autonomous micro helicopters in gps denied environments. J. Field Robot. 28(6), 854–874 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Michal Podhradský
    • 1
  • Calvin Coopmans
    • 1
  • Austin Jensen
    • 1
  1. 1.Utah Water Research LaboratoryUtah State UniversityLoganUSA

Personalised recommendations