Journal of Intelligent & Robotic Systems

, Volume 73, Issue 1–4, pp 373–385 | Cite as

A Passive Velocity Field Control for Navigation of Quadrotors with Model-free Integral Sliding Modes

Passive Velocity Field Control of Quadrotors
  • A. -J. Munoz-Vazquez
  • V. Parra-Vega
  • A. Sanchez


Velocity field (VF) control has proved effective for kinematic robots, aiming essentially at providing desired velocities for navigation along the field, and for obstacle avoidance in cluttered environments. When robot dynamics are involved, it is usually considered either that dynamics are known and that robot is fully actuated, thus it is not clear how to deal with VF control (VFC) for unknown underactuated dynamics, such as for a quadrotor. Moreover, passive VF (PVF) stands for an attractive methodology for quadrotors because of it yields time-invariant nominal spatial field for smooth approaching and easy manoeuvring. In this paper, we propose a constructive method to design a PVF-based controller with a chattering-free integral sliding modes for local exponential position tracking. The salient feature of our proposal is the passive nature of the field as well as the controller is model-free for the complete standard quasi-Lagrangian dynamic model of the quadrotor. The controller does not require the derivative nor any assumption on boundedness on the integral of the VF, yet the closed-loop withstands robustness against parametric and model uncertainties. Simulations are discussed, and remarks address the viability of the proposed approach.


Quadrotor control Velocity field Model-free control Integral sliding modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, P.-Y., Horowitz, R.: Passive velocity field control of mechanical manipulators. IEEE Trans. Robot. Autom. 15(4), 1346–1359 (1999)CrossRefGoogle Scholar
  2. 2.
    Li, P.-Y., Horowitz, R.: Passive velocity field control (PVFC). Part II. Application to contour following. IEEE Trans. Autom. Control 46(9), 1360–1371 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Khatib, O.: Real-Time Obstacle Avoidance for Manipulators And Mobile Robots. In: IEEE Int. Conf. on Robotics and Automation, pp. 500–505 (1985)Google Scholar
  4. 4.
    Rimon, E., Koditchek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  5. 5.
    Ha, Ch., Choi, F.-B., Lee, D.: Preliminary Results on Passive Velocity Field Control of Quadrotors. In: 2012 Int. Conf. on Ubiquitous Robots and Ambient Intelligence, pp. 378–379 (2012)Google Scholar
  6. 6.
    Aicardi, M., Casalino, G., Indiveri, G.: Closed loop control of 3D underactuated vehicles via velocity field tracking. In: IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics vol. 1, pp. 355–360 (2001)Google Scholar
  7. 7.
    Lim, S., Kim, Y., Lee D., Bang, H.: Standoff Target Tracking using a Vector Field for Multiple Unmanned Aircrafts. J. Intell. Robot. Syst. 69, 347–360 (2013)CrossRefGoogle Scholar
  8. 8.
    Yamakita, M., Suzuki, K., Zheng, X.-Z., Katayama, M., Ito, K.: An extension of passive velocity field control to cooperative multiple manipulator systems. In: IEEE/RSJ Int. Conf. on Intelligent Robot and Systems vol. 1, pp. 11–16 (1997)Google Scholar
  9. 9.
    Erdogan, A., Cihan-Satici, A., Patoglu, V.: Passive velocity field control of a forearm-wrist rehabilitation robot. In: IEEE Int. Conf. on Rehabilitation Robotics, pp.1–8 (2011)Google Scholar
  10. 10.
    Yamakita, M., Asano, F., Furuta, K.: Passive velocity field control of biped walking robot. In: IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 3057–3062 (2000)Google Scholar
  11. 11.
    Parra-Vega, V., Sanchez, A., Izaguirre, C., Garcia, O., Ruiz-Sanchez, F.: Toward Aerial Grasping and Manipulation with Multiple UAVs. In: Int. Conf. on Unmanned Aircraft Systems (ICUAS) (2012)Google Scholar
  12. 12.
    Parra-Vega, V.: Second Order Sliding Mode Control for Robot Arms with Time Base Generators for Finite-Time Tracking. Dyn. Control. 11, 175–186 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gillula, J.-H., Hoffmann, G.-M., Huang, H., Vitus, M.-P., Tomlin, C.-J.: Applications of hybrid reachability analysis to robotic aerial vehicles. Int. J. Robot. Res. 30(3), 335–354 (2011)CrossRefGoogle Scholar
  14. 14.
    Guldner, J., Utkin, V.-I.: Sliding Mode Control for Gradient Tracking and Robot Navigation Using Artificial Potential Fields. IEEE Trans. Robot. Autom. 11(2), 247–254 (1995)CrossRefGoogle Scholar
  15. 15.
    Jin, E., Zhao, S.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Parra-Vega, V., Arimoto, S., Liu, Y.-H., Hirzinger, G., Akella, P.: Dynamic Sliding PID Control for Tracking of Robots Manipulators: Theory and Experiments. IEEE Trans. Robot. Autom. 19(6), 967–976 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. -J. Munoz-Vazquez
    • 1
    • 2
  • V. Parra-Vega
    • 1
    • 2
  • A. Sanchez
    • 1
    • 2
  1. 1.Robotics and Advanced Manufacturing Division, Saltillo CampusResearch Center for Advanced Studies (Cinvestav)Ramos ArizpeMexico
  2. 2.Laboratory of Non-inertial Robots and Man-machine Interfaces, Monterrey CampusCinvestavMexico

Personalised recommendations