Impulse Control for Planar Spring-Mass Running



In this paper, we present a novel control strategy for running which is robust to disturbances, and makes excellent use of passive dynamics for energy economy. Our strategy combines two ideas: an existing flight phase policy, and a novel stance phase impulse control policy. The state-of-the-art flight phase policy commands a leg angle trajectory that results in a consistent horizontal center-of-mass velocity from hop to hop when running over uneven terrain, thus maintaining a steady gait and avoiding falls. Our novel stance phase control policy rejects ground disturbances by matching the actuated model’s toe impulse profile to that of a passive spring-mass system hopping on flat rigid ground. This combined strategy is self-stable for changes in ground impedance or ground height, and thus does not require a ground model. Our strategy is promising for robotics applications, because there is a clear distinction between the passive dynamic behavior of the model and the active controller, it does not require sensing of the environment, and it is based on a sound theoretical background that is compatible with existing high-level controllers for ideal spring-mass models.


Impulse control Force control Robot running Spring-mass running 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daley, M.A., Usherwood, J.R., Felix, G., Biewener, A.A.: Running over rough terrain: Guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. J. Exp. Biol. 209, 171–187 (2006)CrossRefGoogle Scholar
  2. 2.
    Grimes, J.A., Hurst, J.W.: The design of atrias 1.0, a unique monopod hopping robot. In: International Conference on Climbing and Walking Robots (2012)Google Scholar
  3. 3.
    Ahmadi, M., Buehler, M.: Controlled passive dynamic running experiments with the arl monopod ii. IEEE Trans. Robot. 22, 974–986 (2006)CrossRefGoogle Scholar
  4. 4.
    Zeglin, G., Brown, H.B.: Control of a bow leg hopping robot. In: IEEE International Conference on Robotics and Automation (1998)Google Scholar
  5. 5.
    Playter, R., Buehler, M., Raibert, M.: Bigdog. In: Gerhart, G.R., Shoemaker, C.M., Gage, D.W. (eds.) Proceedings of SPIE International Society for Optical Engineering, vol. 6230, p. 62302O. SPIE (2006)Google Scholar
  6. 6.
    Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989)CrossRefGoogle Scholar
  7. 7.
    Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332 (1999)Google Scholar
  8. 8.
    Full, R.J., Farley, C.T.: Musculoskeletal dynamics in rhythmic systems—a comparative approach to legged locomotion. In: Winters, J.M., Crago, P.E. (eds.) Biomechanics and Neural Control of Posture and Movement. Springer-Verlag, New York (2000)Google Scholar
  9. 9.
    Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. 173, 509–517 (1993)CrossRefGoogle Scholar
  10. 10.
    Schmitt, J., Holmes, P.: Mechanical models for insect locomotion: dynamics and stability in the horizontal plane i. theory. Biol. Cybernet. 83, 501–515 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22(11/12), 1217–1227 (1989)CrossRefGoogle Scholar
  12. 12.
    Cavagna, G.A.: Elastic bounce of the body. J. Appl. Physiol. 29(3), 279–282 (1970)Google Scholar
  13. 13.
    Farley, C.T., Gonzalez, O.: Leg stiffness and stride frequency in human running. J. Biomech. 29(2), 181–186 (1996)CrossRefGoogle Scholar
  14. 14.
    Ferris, D.P., Farley, C.T.: Interaction of leg stiffness and surface stiffness during human hopping. The American Physiological Society 82, 15–22 (1997)Google Scholar
  15. 15.
    McMahon, T.A., Cheng, G.C.: The mechanics of running: how does stiffness couple with speed? J. Biomech. 23, 65–78 (1990)CrossRefGoogle Scholar
  16. 16.
    Raibert, M.: Legged Robots That Balance. MIT Press, Cambridge (1986)Google Scholar
  17. 17.
    Schwind, W.J., Koditschek, D.E.: Approximating the stance map of a 2-dof monoped runner. J. Nonlinear Sci. 10, 533–568 (2000)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Grimmer, S., Ernst, M., Gunther, M., Blickhan, R.: Running on uneven ground: leg adjustment to vertical steps and self-stability. J. Exp. Biol. 211(18), 2989–3000 (2008)CrossRefGoogle Scholar
  19. 19.
    Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232, 315–328 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Schwind, W.J.: Spring loaded inverted Pendulum running: a plant model. Ph.D. thesis, The University of Michigan Press, Ann Arbor (1998)Google Scholar
  21. 21.
    Schwind, W.J., Koditschek, D.E.: Characterization of monopod equilibrium gaits. In: IEEE International Conference on Robotics and Automation, pp. 1986–1992 (1997)Google Scholar
  22. 22.
    Ernst, M., Geyer, H., Blickhan, R.: Spring-legged locomotion on uneven ground: a control approach to keep the running speed constant. In: Proceedings of the 12th International Conference on Climbing and Walking Robots (CLAWAR) (2009)Google Scholar
  23. 23.
    Seyfarth, A., Geyer, H.: Natural control of spring-like running: optimized selfstability. In: CLAWAR (2002)Google Scholar
  24. 24.
    Seyfarth, A., Geyer, H., Herr, H.: Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547–2555 (2003)CrossRefGoogle Scholar
  25. 25.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 399–406 (1995)Google Scholar
  26. 26.
    Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (1999)Google Scholar
  27. 27.
    Kemper, K., Koepl, D., Hurst, J.: Optimal passive dynamics for torque/force control. In: International Confererence of Robotics and Automation (2010)Google Scholar
  28. 28.
    Buehler, M., Playter, R., Raibert, M.: Robots step outside. In: International Symposium Adaptive Motion of Animals and Machines (2005)Google Scholar
  29. 29.
    Pratt, J., Pratt, G.: Exploiting natural dynamics in the control of a planar bipedal walking robot. In: Proceedings of the Thirty-Sixth Annual Allerton Conference on Communication, Control, and Computing. (Monticello, IL) (1998)Google Scholar
  30. 30.
    Farley, C.T., Houdijk, H.H.P., Strien, C.V., Louie, M.: Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. The American Physiological Society 85, 1044–1055 (1998)Google Scholar
  31. 31.
    Wilson, A., McGuigan, P.: pogo stick horse legs need better track surfaces. J. Exp. Biol. 206, 1261 (2003)CrossRefGoogle Scholar
  32. 32.
    Koepl, D., Kemper, K., Hurst, J.: Force control for spring-mass walking and running. In: International Conference of Advanced Intelligent Mechatronics (2010)Google Scholar
  33. 33.
    Koepl, D., Hurst, J.: Force control for planar spring-mass running. In: International Conference on Intelligent Robots and Systems (2011)Google Scholar
  34. 34.
    Niiyama, R., Nishikawa, S., Kuniyoshi, Y.: Athlete robot with applied human muscle activation patterns for bipedal running. In: IEEE-RAS International Conference on Humanoid Robots (2010)Google Scholar
  35. 35.
    Jonathan, J.E.C., Hurst, W., Rizzi, A.A.: An actuator with physically variable stiffness for highly dynamic legged locomotion. In: IEEE Conference on Robotics and Automation (2004)Google Scholar
  36. 36.
    Verrelst, B., Vanderborght, B.: Novel robotic applications using adaptable compliant actuation. An implementation towards reduction of energy consumption for legged robots. In: J. Buchli (ed.) Mobile Robotics, Moving Intelligence (2006). doi: 10.5772/4737
  37. 37.
    Whittacker, E.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)Google Scholar
  38. 38.
    Chen, C.-T.: Linear System Theory and Design. Oxford Univeresity Press (1999)Google Scholar
  39. 39.
    Moritz, C.T., Farley, C.T.: Human hopping on damped surfaces: strategies for adjusting leg mechanics. Proc. R. Soc. Lond. 270, 1741–1746 (2003)CrossRefGoogle Scholar
  40. 40.
    Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: Series compliance for an efficient running gait: Lessons learned from the ecd leg. IEEE Robot. Autom. Mag. 15, 42–51 (2008)CrossRefGoogle Scholar
  41. 41.
    Zeglin, G.: Uniroo: a one-legged dynamic hopping robot. Tech. rep., Massachusetts Intitute of Technology, Cambridge, Massachusetts (1991)Google Scholar
  42. 42.
    Marc Raibert, G.N.R.,P., Blankespoor, K., the BigDog Team: Bigdog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congres (IFAC’08). The International Federation of Automatic Control, Seoul, Korea (2008)Google Scholar
  43. 43.
    Andrews, B., Miller, B., Schmitt, J., Clark, J.E.: Running over unknown rough terrain with a one-legged planar robot. Bioinspir Biomim. 6(2), 173 (2011)CrossRefGoogle Scholar
  44. 44.
    Moritz, C.T., Farley, C.T.: Human hoppers compensate for simultaneous changes in surface compression and energy dissipation on heavily damped surfaces. J. Biomech. 39(6), 1030–1038 (2006)CrossRefGoogle Scholar
  45. 45.
    van der Krogt, M.M., de Graaf, W.W., Farley, C.T., Moritz, C.T., Casius, L.R., Bobbert, M.F.: Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes in human hopping. J. Appl. Physiol. 107(3), 801–808 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Mechanical, Industrial and Manufacturing EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations