Real-Time Motion Tracking of Robot Manipulators Using Adaptive Genetic Algorithms

  • Mahmoud Tarokh
  • Xiaomang Zhang


The paper presents a genetic algorithm approach to real-time motion tracking of redundant and non-redundant manipulators. The joint angle trajectories are found by applying genetic operators to a set of suitably generated configurations so that the end-effector follows a desired workspace trajectory accurately. The probability of applying a particular genetic operator is adapted on-line to achieve fast convergence to the solution. The adaptation is based on two measures, namely, diversity and fitness of the generated configurations. In order to achieve real time tracking, special provisions are made so that only an appropriate small region in the joint space is searched. The tracking problem is solved at the position level rather the then velocity level. As such the proposed method does not use the manipulator Jacobian inverse or pseudo-inverse matrix and is shown to be free from problems such as excessive joint velocities due to singularities. Simulation results are presented for the 6-DOF Puma and the 7-DOF Robotic Research arm that demonstrate good tracking accuracy and reasonable joint velocities.


Robot trajectory tracking Genetic algorithms Motion control Adaptive control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tarokh, M.: Decoupled nonlinear three-term controllers for robot trajectory tracking. IEEE Trans. Robot. Autom. 15(2), 369–380 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aguinaga-Ruiz, E., Zavala-Rio, A., Santibanez, V., Reyes, S.: Global trajectory tracking through static feedback for robot manipulators with bounded inputs. IEEE Trans. Contr. Syst. Tech. 17(4), 934–944 (2009)CrossRefGoogle Scholar
  3. 3.
    Moreno-Valenzuela, J., Santibanez, V., Campa, R.: On output feedback tracking control of robot manipulators with bounded input torque. Int. J. Contr. Autom. Syst. 6(1), 76–85 (2008)Google Scholar
  4. 4.
    Leigeois, A.: Automatic supervisory control of configuration and behavior of multi-body mechanisms. IEEE Trans. Syst. Man Cybern. SMC-7(14), 868–871 (1977)Google Scholar
  5. 5.
    Nakamura, N.: Advanced Robotics – Redundancy and Optimization. Addison-Wesley, Reading (1991)Google Scholar
  6. 6.
    Klein, C.A., Huang, C.H.: Review of pseudo-inverse control for use with kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. SMC-13(3), 245–250 (1983)CrossRefGoogle Scholar
  7. 7.
    Bailieul, J.: Kinematic programming alternatives for redundant manipulators. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 722–728. St. Louis, Mo (1985)Google Scholar
  8. 8.
    Seraji, H.: Configuration control of redundant manipulators: theory and implementation. IEEE Trans. Robot. Autom. RA-5, 472–490 (1989)CrossRefGoogle Scholar
  9. 9.
    Chiaverini, S., Sciliano, B., Egeland, O.: Review of damped least squares inverse kinematics with experiments on an industrial robot manipulators. IEEE Trans. Contr. Syst. Tech. 2(2), 123–134 (1994)CrossRefGoogle Scholar
  10. 10.
    Wolovich, W.A., Elliot, H.: A computational technique for inverse kinematics. In: Proc. 23rd Conf. Decision and Control, pp. 1359–1363 (1984)Google Scholar
  11. 11.
    Chevallereau, C., Daya, B.: A new method for robot control in singular configurations with motion in any Cartesian direction. Proc. IEEE Int. Conf. Robot. Autom. 4, 2692–2697 (1994)Google Scholar
  12. 12.
    Lloyed, J.E., Hayward, V.: Singularity robust trajectory generation. Int. J. Robot. Res. 20(1), 38–56 (2001)CrossRefGoogle Scholar
  13. 13.
    Dermatas, E., Nearchou, A., Aspragathos, N.: Error -backpropagation solution to the inverse kinematic problem of redundant manipulators. J. Robot. Comput. Integrat. Manuf. 12(4), 303–310 (1996)CrossRefGoogle Scholar
  14. 14.
    Nearchou, A.C.: Solving the inverse kinematics problem of redundant robots operationg in complex environments via a modified genetic algorithm. J. Mech. Mach. Theory 33(3), 273–292 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Khwaja, A., Rahman, M.O., Wagner, M.G.: Inverse kinematics of arbitrary robotic manipulators using genetic algorithms. In: Lenarcic, J., Justy, M.L. (eds.) Advances in Robot Kinematics: Analysis and Control, pp. 375–382. Kluwer Academic, Norwell (1998)CrossRefGoogle Scholar
  16. 16.
    Hirakawa, A.R., Kawamura, A.: Proposal of trajectory generation for redundant manipulators without inverse matrix calculation. Adv. Robot. 11(3), 213–232 (1997)CrossRefGoogle Scholar
  17. 17.
    McAvoy, N., Sangolola, B., Szabad, Z.: Optimal trajectory generation for redundant planar manipulator. In: Proc. IEEE Int. Conf. Syst. Man Cybern., pp. 3241–3246. Nashville (2000)Google Scholar
  18. 18.
    Tian, L., Collins, C.: Motion planning for redundant manipulators using a floating point genetic algorithm. J. Intell. Robot. Syst. Theory Appl. 38(3–4), 297–312 (2003)CrossRefGoogle Scholar
  19. 19.
    Ata, A.A., Myo, T.R.: Optimal point-to-point trajectory tracking of redundant manipulators using generalized pattern search. Int. J. Adv. Robotic Syst. 2(3), 239–244 (2005)Google Scholar
  20. 20.
    Juan, W., Yang, H., Xie, H.: Control of manipulator trajectory tracking based on improved RBFNN. In: Int. Conf. Intell. Human-Machine Syst. Cybern., pp. 142–145 (2009)Google Scholar
  21. 21.
    Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Networks 5(1), 96–101 (1994)CrossRefGoogle Scholar
  22. 22.
    Hartl, R.F.: A global convergence proof for a class of genetic algorithms. Technical Report, Institute of Econometrics, Operations Research and Systems Theory, Vienna University of Technology. Accessible at (1990)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceSan Diego State UniversitySan DiegoUSA

Personalised recommendations