Advertisement

A Sensorized Garment Controlled Virtual Robotic Wheelchair

  • Tauseef GulrezEmail author
  • Alessandro Tognetti
Article

Abstract

This paper presents the design and performance of a body-machine-interface (BoMI) system, where a user controls a robotic 3D virtual wheelchair with the signals derived from his/her shoulder and elbow movements. BoMI promotes the perspective that system users should no longer be operators of the engineering design but should be an embedded part of the functional design. This BoMI system has real-time controllability of robotic devices based on user-specific dynamic body response signatures in high-density 52-channel sensor shirt. The BoMI system not only gives access to the user’s body signals, but also translates these signals from user’s body to the virtual reality device-control space. We have explored the efficiency of this BoMI system in a semi-cylinderic 3D virtual reality system. Experimental studies are conducted to demonstrate, how this transformation of human body signals of multiple degrees of freedom, controls a robotic wheelchair navigation task in a 3D virtual reality environment. We have also presented how machine learning can enhance the interface to adapt towards the degree of freedoms of human body by correcting the errors performed by the user.

Keywords

Wearable sensors Robotics Virtual reality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, K., McCluskey, A.: A survey of adult power wheelchair and scooter users. Disabil. Rehabil. Assist. Technol. 5(6), 411–419 (2010)CrossRefGoogle Scholar
  2. 2.
    Clifton, D.W.: Paying for power. Rehab. Manag. 17, 32–36 (2004)Google Scholar
  3. 3.
    Fitzgerald, S.G., Kelleher, Teodorski, E.A., Collins, D.M., Boninger, M., Cooper, R.A.: The development of a nationwide registry of wheelchair users. Disabil. Rehabil. Assist. Technol. 2, 358–365 (2007)CrossRefGoogle Scholar
  4. 4.
    Miles-Tapping, C., MacDonald, L.J.: Lifestyle implications of power mobility. Phys. Occup. Ther. Geriatr. 12(4), 31–49 (1995)CrossRefGoogle Scholar
  5. 5.
    Pettersson, I., Törnquist, K., Ahlström, G.: The effect of an outdoor powered wheelchair on activity and participation in users with stroke. Disabil. Rehabil. Assist. Technol. 1(4), 235–243 (2006)CrossRefGoogle Scholar
  6. 6.
    Mortenson, W.B., Miller, W.C., Boily, J., Steele, B., Odell, L., Crawford, E.M., Desharnais, G.: Perceptions of power mobility use and safety within residential facilities. Can. J. Occup. Ther. Revue canadienne d’ergothérapie 72(3), 142 (2005)CrossRefGoogle Scholar
  7. 7.
    Cooper, E., Fyfe, N.C.M., Booth, S., Mandy, A., Broadbridge, H., Mortimer, C., Steedman, W.M., McMillan I.R., Ravey, J., Whiteford, G.E., et al.: The provision of powered wheelchairs: one year on. Int. J. Ther. Rehabil. 5(6), 280–281 (1998)Google Scholar
  8. 8.
    Brandt, A., Iwarsson, S., Stahle, A.: Older people’s use of powered wheelchairs for activity and participation. J. Rehab. Med. 36(2), 70–77 (2004)CrossRefGoogle Scholar
  9. 9.
    Fehr, L., Langbein, W.E., Skaar, S.B.: Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J. Rehabil. Reserv. Dev. 37(3), 353–360 (2000)Google Scholar
  10. 10.
    Nitz, J.C.: Evidence from a cohort of able bodied adults to support the need for driver training for motorized scooters before community participation. Patient Educ. Couns. 70(2), 276–280 (2008)CrossRefGoogle Scholar
  11. 11.
    Hoenig, H., Pieper, C., Branch, L.G., Cohen, H.J.: Effect of motorized scooters on physical performance and mobility: a randomized clinical trial. Arch. Phys. Med. Rehab. 88(3), 279–286 (2007)CrossRefGoogle Scholar
  12. 12.
    Cassell, E., Clapperton, A.: Consumer product-related injury (2): Injury related to the use of motorised mobility scooters. Hazard (Ed. 62) Victorian Injury Surveillance Unit (2006)Google Scholar
  13. 13.
    Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature 453(7198), 1098–1101 (2008)CrossRefGoogle Scholar
  14. 14.
    Hochberg, L.R., Donoghue, J.P.: Sensors for brain-computer interfaces. IEEE Eng. Med. Biol. Mag. 25(5), 32–38 (2006)CrossRefGoogle Scholar
  15. 15.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  16. 16.
    Rebsamen, B., Burdet, E., Guan, C., Zhang, H., Teo, C.L., Zeng, Q., Ang, M., Laugier, C.: A brain-controlled wheelchair based on p300 and path guidance. In: The 1st International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1101–1106. IEEE (2006)Google Scholar
  17. 17.
    McFarland, D.J., Krusienski, D.J., Sarnacki, W.A., and Wolpaw, J.R.: Emulation of computer mouse control with a noninvasive brain–computer interface. J. Neural Eng. 5, 101 (2008)CrossRefGoogle Scholar
  18. 18.
    Schalk, G., Miller, K.J., Anderson, N.R., Wilson, J.A., Smyth, M.D., Ojemann, J.G., Moran, D.W., Wolpaw, J.R., Leuthardt, E.C.: Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75 (2008)CrossRefGoogle Scholar
  19. 19.
    Vidal, J.J.: Toward direct brain-computer communication. Annu. Rev. Biophys. Bio. 2(1), 157–180 (1973)CrossRefGoogle Scholar
  20. 20.
    Gotman, J., Gloor, P.: Automatic recognition and quantification of interictal epileptic activity in the human scalp eeg. Electroen. Clin. Neuro. 41(5), 513–529 (1976)CrossRefGoogle Scholar
  21. 21.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al.: Principles of Neural Science, vol. 4. McGraw-Hill New York (2000)Google Scholar
  22. 22.
    Lau, C., O’Leary, S.: Comparison of computer interface devices for persons with severe physical disabilities. Am. J. Occup. Ther. 47(11), 1022–1030 (1993)CrossRefGoogle Scholar
  23. 23.
    Yano, K., Hashimura, J., Aoki, T., Nishimoto, Y.: Flexion-extension motion assistance using an upper limb motion-assist robot based on trajectory estimation of reaching movement. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4599–4602. IEEE (2009)Google Scholar
  24. 24.
    Kawamoto, H., Sankai, Y.: Power assist method based on phase sequence and muscle force condition for hal. Adv. Robot. 19(7), 717–734 (2005)CrossRefGoogle Scholar
  25. 25.
    Kiguchi, K., Rahman, M.H., Sasaki, M., Teramoto, K.: Development of a 3dof mobile exoskeleton robot for human upper-limb motion assist. Robot. Auton. Syst. 56(8), 678–691 (2008)CrossRefGoogle Scholar
  26. 26.
    Kobayashi, H., Nozaki, H., Tsuji, T.: Development of power assist system for caregiver by muscle suit. In: International Conference on Mechatronics and Automation (ICMA), pp. 180–185. IEEE (2007)Google Scholar
  27. 27.
    Mao, Y., Agrawal, S.K.: Wearable cable-driven upper arm exoskeleton-motion with transmitted joint force and moment minimization. In: IEEE International Conference on Robotics and Automation, (ICRA) 2010, pp. 4334–4339. IEEE (2010)Google Scholar
  28. 28.
    Ohara, E., Watanabe, T., Oishi, T., Aoki, T., Nishimoto, Y., Yano, K.: Assistance control of wheelchair operation using active cast for the upper limb. In: IEEE International Conference on Robotics and Automation, (ICRA) 2011, pp. 2223–2228. IEEE (2011)Google Scholar
  29. 29.
    Krebs, H.I., Ferraro, M., Buerger, S.P., Newbery, M.J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B.T., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for mit-manus. J. NeuroEng. Rehabil. 1(1), 5 (2004)CrossRefGoogle Scholar
  30. 30.
    Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D.: Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sens. J. 3(4), 460–467 (2003)CrossRefGoogle Scholar
  31. 31.
    Tognetti, A., Lorussi, F., Bartalesi, R., Quaglini, S., Tesconi, M., Zupone, G., De Rossi, D.: Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J. NeuroEng. Rehabil. 2(1), 8 (2005)CrossRefGoogle Scholar
  32. 32.
    Bonato, P.: Advances in wearable technology and applications in physical medicine and rehabilitation. J. NeuroEng. Rehabil. 2(1), 2 (2005)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Lorussi, F., Rocchia, W., Scilingo, E.P., Tognetti, A., DeRossi, D.: Wearable redundant fabric-based sensors arrays for reconstruction of body segment posture. IEEE Sens. J. 4(6), 807–818 (2004)CrossRefGoogle Scholar
  34. 34.
    Lorussi, F., Scilingo, E.P., Tesconi, M., Tognetti, A., De Rossi, D.: Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed. 9(3), 372–381 (2005)CrossRefGoogle Scholar
  35. 35.
    Adelola, I.A., Cox, S.L., Rahman, A.: Adaptable virtual reality interface for powered wheelchair training of disabled children. In: Proc. 4th Int. Conf. Disability, Virtual Reality Assoc. Tech (2002)Google Scholar
  36. 36.
    Klein, C.A., Huang, C.H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE T. Syst. Man Cy. 13(2), 245–250 (1983)CrossRefGoogle Scholar
  37. 37.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)CrossRefGoogle Scholar
  38. 38.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417–441 (1933)CrossRefGoogle Scholar
  39. 39.
    Molfese, D.L.: Electrophysiological correlates of semantic features. J. Psycholinguist. Res. 14(3), 289–299 (1985)CrossRefGoogle Scholar
  40. 40.
    Méndez-Bértolo, C., Pozo, M.A., Hinojosa, J.A.: Word frequency modulates the processing of emotional words: convergent behavioral and electrophysiological data. Neurosci. Lett. 494(3), 250–254 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Virtual and Interactive Simulations of Reality Group, Department of Computing, Faculty of ScienceMacquarie UniversitySydneyAustralia
  2. 2.Interdepartmental Research Center “E.Piaggio”University of PisaPisaItaly
  3. 3.Information Engineering DepartmentUniversity of PisaPisaItaly

Personalised recommendations