Advertisement

Journal of Intelligent & Robotic Systems

, Volume 75, Issue 3–4, pp 595–608 | Cite as

Robust Tracking Control of a Quadrotor Helicopter

  • Hao Liu
  • Yongqiang Bai
  • Geng Lu
  • Zongying Shi
  • Yisheng Zhong
Article

Abstract

In this paper, a robust tracking control method for automatic take-off, trajectory tracking, and landing of a quadrotor helicopter is presented. The designed controller includes two parts: a position controller and an attitude controller. The position controller is designed by the static feedback control method to track the desired trajectory of the altitude and produce the desired angles for pitch and roll angles. By combining the proportional-derivative (PD) control method and the robust compensating technique, the attitude controller is designed to track the desired pitch and roll angles and stabilize the yaw angle. It is proven that the attitude tracking error of each channel can converge to the given neighborhood of the origin ultimately. Experimental results demonstrate the effectiveness of the designed control method.

Keywords

Quadrotor helicopter Robust control Trajectory tracking Automatic take-off and landing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)CrossRefGoogle Scholar
  2. 2.
    Altug, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)CrossRefGoogle Scholar
  3. 3.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Tech. 12(4), 510–516 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Marconi, l., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Applic. 4(11), 2343–2355 (2010)CrossRefGoogle Scholar
  7. 7.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Tech. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  8. 8.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H  ∞  control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilization for quadrotor control. IET Control Theory Applic. 3(3), 303–314 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bertrand, S., Guenard, N., Hamel, T., Piet-Lahanier, H., Eck, L.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011)CrossRefGoogle Scholar
  11. 11.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011)CrossRefGoogle Scholar
  12. 12.
    Vilchis, J.C.A., Brogliato, B., Dzul, A., Lozano, R.: Nonlinear modelling and control of helicopters. Automatica 45(10), 1583–1596 (2003)CrossRefGoogle Scholar
  13. 13.
    Peng, K., Cai, G., Chen, B.M., Dong, M., Lum, K.Y., Lee, T.H.: Design and implementation of an autonomous flight control law for a UAV helicopter. Automatica 39(9), 2333–2338 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yu, Y., Zhong, Y.: Robust attitude control of a 3DOF helicopter with multi-operation points. J. Syst. Sci. Complex. 22(2), 207–219 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zheng, B., Zhong, Y.: Robust attitude regulation of a 3-DOF helicopter benckmark: theory and experiments. IEEE Trans. Ind. Electron. 58(2), 660–670 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Lu, G., Zhong, Y.: Robust LQR attitude control of a 3-DOF lab helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. (2013, Available through early access)Google Scholar
  17. 17.
    Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Tech. 19(2), 465–473 (2011)CrossRefGoogle Scholar
  18. 18.
    Sira-Ramirez, H., Castro-Linarez, R., Liceaga-Castro, E.: A Liouvillian systems approach for the trajectory planning-based control of helicopter models. Int. J. Robust Nonlinear Control 10(4), 301–320 (2000)zbMATHCrossRefGoogle Scholar
  19. 19.
    Zhong, Y.: Robust output tracking control of SISO plants with multiple operating points and with parametric and unstructured uncertainties. Int. J. Control 75(4), 219–241 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hao Liu
    • 1
  • Yongqiang Bai
    • 2
  • Geng Lu
    • 1
  • Zongying Shi
    • 1
  • Yisheng Zhong
    • 1
  1. 1.Department of Automation, TNListTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Luoyang Electronic Equipment Test Center of ChinaLuoyangPeople’s Republic of China

Personalised recommendations