Journal of Intelligent & Robotic Systems

, Volume 72, Issue 2, pp 147–165 | Cite as

Robotic Urban Search and Rescue: A Survey from the Control Perspective

Article

Abstract

Robotic urban search and rescue (USAR) is a challenging yet promising research area which has significant application potentials as has been seen during the rescue and recovery operations of recent disaster events. To date, the majority of rescue robots used in the field are teleoperated. In order to minimize a robot operator’s workload in time-critical disaster scenes, recent efforts have been made to equip these robots with some level of autonomy. This paper provides a detailed overview of developments in the exciting and challenging area of robotic control for USAR environments. In particular, we discuss the efforts that have been made in the literature towards: 1) developing low-level controllers for rescue robot autonomy in traversing uneven terrain and stairs, and perception-based simultaneous localization and mapping (SLAM) algorithms for developing 3D maps of USAR scenes, 2) task sharing of multiple tasks between operator and robot via semi-autonomous control, and 3) high-level control schemes that have been designed for multi-robot rescue teams.

Keywords

Urban search and rescue Rescue robots Robot autonomy SLAM Semi-autonomous control Multi-robot control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murphy, R.: Activities of rescue robots at the world trade center from 11–21 September 2001. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)CrossRefGoogle Scholar
  2. 2.
    Murphy, R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.: Search and rescue robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1151–1173. Springer, Berlin (2008)CrossRefGoogle Scholar
  3. 3.
    Guizzo, E.: Japan earthquake: Robots help search for survivors. IEEE Spectrum (2011). URL http://spectrum.ieee.org/automaton/robotics/industrial-robots/japan-earthquake-robots-help-search-for-survivors
  4. 4.
    Guizzo, E.: Japan earthquake: more robots to the rescue. IEEE Spectrum (2011). URL http://spectrum.ieee.org/automaton/robotics/industrial-robots/japan-earthquakemore-robots-to-the-rescue Google Scholar
  5. 5.
    Casper, J., Micire, M., Murphy, R.: Issues in intelligent robots for search and rescue. In: Proceedings of SPIE, pp. 292–302 (2000)Google Scholar
  6. 6.
    Casper, J., Murphy, R.: Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Trans. Syst. Man Cybern. Part B 33(3), 367–385 (2003)CrossRefGoogle Scholar
  7. 7.
    Burke, J., Murphy, R., Coovert, M., Riddle, D.: Moonlight in Miami: a field study of human-robot interaction in the context of an urban search and rescue disaster response training exercise. Hum. Comput. Interact. 19, 85–116 (2004)CrossRefGoogle Scholar
  8. 8.
    Nordqvist, C.: 9/11 ten years on -the health effects on rescue workers. Medical News Today (2011). URL http://www.medicalnewstoday.com/articles/234030.php
  9. 9.
    Chief: Problems and symptoms that a rescue worker may experience thru helping. Rescue Workers (2001). URL http://www.rescue-workers.com/problems.html
  10. 10.
    Mourikis, A., Trawny, N., Roumeliotis, S., Helmick, D., Matthies, L.: Autonomous stair climbing for tracked vehicles. Int. J. Robot. Res. 26(7), 737–758 (2007)CrossRefGoogle Scholar
  11. 11.
    Steplight, S., Egnal, G., Jung, S., Walker, D., Taylor, C., Ostrowski, J.: A mode-based sensor fusion approach to robotic stair-climbing. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1113–1118 (2000)Google Scholar
  12. 12.
    Okada, Y., Nagatani, K., Yoshida, K., Tadokoro, S., Yoshida, T., Koyanagi, E.: Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J. Field Robot. 28(6), 875–893 (2011)CrossRefGoogle Scholar
  13. 13.
    iRobot: User assist package for iRobot 510 Packbot (2012). URL http://www.irobot.com/~/media/Files/Robots/Defense/PackBot/iRobot-PackbotUAP.ashx
  14. 14.
    Liu, Y., Liu, G.: Track-stair interaction analysis and online tip-over prediction for a self-reconfigurable tracked mobile robot climbing stairs. IEEE/ASME Trans. Mech. 14(5), 528–538 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Liu, G.: Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE/ASME Trans. Mech. 15(4), 623–635 (2010)CrossRefGoogle Scholar
  16. 16.
    Ellekilde, L.-P., Huang, S., Miro, J.V., Dissanayake, G.: Dense 3-D map construction for indoor search and rescue. J. Field Robot. 24(1/2), 71–89 (2007)CrossRefGoogle Scholar
  17. 17.
    Yokokohji, Y., Kurisu, M., Takao, S., Kudo, Y., Hayashi, K., Yoshikawa, T.: Constructing a 3-D map of rubble by teleoperated mobile robots with a motion cancelling camera system. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3118–3125 (2003)Google Scholar
  18. 18.
    Kurisu, M., Muroi, H., Yokokohji, Y., Kuwahara, H.: Development of a laser range finder for 3D map-building in rubble—installation in a rescue robot. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 2054–2059 (2007)Google Scholar
  19. 19.
    Zhang, Z., Nejat, G., Guo, H., Huang, P.: A novel 3D sensory system for robot-assisted mapping of cluttered urban search and rescue environments. Intell. Serv. Robot. 4, 119–134 (2011)CrossRefGoogle Scholar
  20. 20.
    Pfingsthorn, M., Slamet, B., Visser, A.: A scalable hybrid multi-robot SLAM method for highly detailed maps. In: RoboCup 2007: Robot Soccer World Cup XI, pp. 457–464. Springer Verlag, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Bruemmer, D., Boring, R., Few, D., Marble, J., Walton, M.: I call shotgun!: an evaluation of mixed-initiative control for novice users of a search and rescue robot. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 2847–2852 (2004)Google Scholar
  22. 22.
    Murphy, R., Sprouse, J.: Strategies for searching an area with emi-autonomous mobile robots. In: Proceedings of Robotics for Challenging Environments, pp. 15–21 (1996)Google Scholar
  23. 23.
    Finzi, A., Orlandini, A.: Human-robot interaction through mixed-initiative planning for rescue and search rovers. In: Bandini, S., Manzoni, S. (eds.) Springer Advances in Artificial Intelligence, vol. 3673, pp. 483–494. Springer, Berlin/Heidlberg (2005)Google Scholar
  24. 24.
    Wegner, R.W., Anderson, J.: An-agent based support for balancing teleoperation and autonomy in urban search and rescue. Int. J. Robot. Autom. 21(2), 120–128 (2006)Google Scholar
  25. 25.
    Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2858–2863 (2010)Google Scholar
  26. 26.
    Doroodgar, B., Nejat, G.: A hierarchical reinforcement learning based control architecture for semi-autonomous rescue robots in cluttered environments. In: Proceedings on IEEE International Conference on Automation Science Engineering, pp. 948–953 (2010)Google Scholar
  27. 27.
    Liu, Y., Nejat, G., Doroodgar, B.: Learning based semi-autonomous control for robots in urban search and rescue. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics (2012)Google Scholar
  28. 28.
    Doroodgar, B.: A learning-based semi-autonomous control architecture for robotic exploration of search and rescue environments. Master’s thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada (2011)Google Scholar
  29. 29.
    Cavallin, K., Svensson, P.: Semi-autonomous teleoperated search and rescue robot. Master’s thesis, Department of Computing Science, Umea University, Sweden (2009)Google Scholar
  30. 30.
    Velagapudi, P., Scerri, P., Sycara, K., Wang, H., Lewis, M., Wang, J.: Scaling effects in multi-robot control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2121–2126 (2008)Google Scholar
  31. 31.
    Sato, N., Matsuno, F., Yamasaki, T., Kamegawa, T., Shiroma, N., Igarashi, H.: Cooperative task execution by a multiple robot team and its operators in search and rescue operations. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1083–1088 (2004)Google Scholar
  32. 32.
    Lewis, M., Wang, H., Chien, S., Scerri, P., Velagapudi, P., Sycara, K., Kane, B.: Teams organization and performance in multi-human/multi-robot teams. In: Proceedings of IEEE International Conference on Systems Man and Cybernetics, pp. 1617–1623 (2010)Google Scholar
  33. 33.
    Kleiner, A., Dornhege, C., Sun, D.: Mapping disaster areas jointly: RFID-coordinated SLAM by humans and Robots. In: Proceedings of IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 1–6 (2007)Google Scholar
  34. 34.
    Hsieh, M., Cowley, A., Keller, J., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C., Endo, Y., Arkin, R., Jung, B., Wolf, D., Sukhatme, G., Mackenzie, D.: Adaptive teams of autonomous aerial and ground robots for situation awareness. J. Field Robot. 24(11), 991–1014 (2007)CrossRefGoogle Scholar
  35. 35.
    Luo, C., Espinosa, A., Pranantha, D., Gloria, A.: Multi-robot search and rescue team. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics, pp. 296–301 (2011)Google Scholar
  36. 36.
    Payton, D., Estkowski, R., Howard, M.: Pheromone robotics and the logic of virtual pheromones. In: Sahin, E., Spears, W. (eds.) Swarm Robotics WS2004 (LNCS), vol. 3342, pp. 45–57. Springer Verlag, Berlin, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Couceiro, M., Rocha, R., Ferreira, N.: A novel multi-robot exploration approach based on particle swarm optimization algorithms. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics, pp. 327–332 (2011)Google Scholar
  38. 38.
    Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo, V.: Towards heterogeneous robot teams for disaster mitigation: results and performance metrics from robocup rescue. J. Field Robot. 24(11), 943–967 (2007)CrossRefGoogle Scholar
  39. 39.
    de Hoog, J., Cameron, S., Visser, A.: Dynamic team hierarchies in communication-limited multi-robot exploration. In: Proceedings of IEEE International Workshop on Safety Security and Rescue Robotics, pp. 1–7 (2010)Google Scholar
  40. 40.
    Meuth, R., Saad, E., Wunsch, D., Vian, J.: Adaptive task allocation for search area coverage. In: Proceedings of IEEE International Conference on Technologies for Practical Robot Applications, pp. 67–74 (2009)Google Scholar
  41. 41.
    Nourbakhsh, I., Sycara, K., Koes, N., Yong, M., Lewis, M., Burion, S.: Human-robot teaming for search and rescue. In: Pervasive Computing, pp. 72–78 (2005)Google Scholar
  42. 42.
    Wong, C., Seet, G., Sim, S.: Multiple-robot systems for USAR: key design attributes and deployment issues. Int. J. Adv. Robot. Syst. 8(1), 85–101 (2011)Google Scholar
  43. 43.
    Hsieh, M., Cowley, A., Kumar, V., Tayloar, C.: Maintaining network connectivity and performance in robot teams. J. Field Robot. 25(1), 111–131 (2008)CrossRefGoogle Scholar
  44. 44.
    Tardioli, D., Mosteo, A., Riazuelo, L., Villarroel, J., Montano, L.: Enforcing network connectivity in robot team missions. Int. J. Robot. Res. 29(4), 460–480 (2010)CrossRefGoogle Scholar
  45. 45.
    Woods, D., Tittle, J., Feil, M., Roesler, A.: Envisioning human-robot coordination in future operations. IEEE Trans. Syst. Man Cybern. Part C 34(2), 210–218 (2004)CrossRefGoogle Scholar
  46. 46.
    Murphy, R., Casper, J., Hyams, J., Micire, M., Minten, B.: Mobility and sensing demands in USAR. In: Proceedings of 26th Annual Conference of IEEE Industrial Electronics Society, pp. 138–142 (2000)Google Scholar
  47. 47.
    Casper, J., Murphy, R.: Workflow study on human-robot interaction in USAR. In: Proceedings in IEEE International Conference on Robotics and Automation, pp. 1997–2003 (2002)Google Scholar
  48. 48.
    Crandall, J., Goodrich, M.: Characterizing the efficiency of human robot interaction: a case study of shared-control teleoperation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1290–1295 (2002)Google Scholar
  49. 49.
    Shen, J., Ibanez-Guzman, J., Ng, T., Chew, B.: A collaborative-shared control system with safe obstacle avoidance capability. In: Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, pp. 119–123 (2004)Google Scholar
  50. 50.
    Perrin, X., Chavarriaga, R., Colas, F., Siegward, R., Millan, J.: Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robot. Auton. Syst. 58(12), 1246–1255 (2010)CrossRefGoogle Scholar
  51. 51.
    Law, C., Xu, Y.: Shared control for navigation and balance of a dynamically stable robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1985–1990 (2002)Google Scholar
  52. 52.
    Tang, H., Cao, X., Song, A., Guo, Y., Bao, J.: Human-robot collaborative teleoperation system for semi-autonomous reconnaissance robot. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 1934–1939 (2009)Google Scholar
  53. 53.
    Goodrich, M., Olsen, J.D., Crandall, J., Palmer, T.: Experiments in adjustable autonomy. Tech. rep., Computer Science Department, Brigham Young University (2001). URL http://faculty.cs.byu.edu/mike/mikeg/papers/IJCAI01.pdf
  54. 54.
    Marble, J., Bruemmer, D., Few, D.: Lessons learned from usability tests with a collaborative cognitive workspace for human-robot teams. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 448–453 (2003)Google Scholar
  55. 55.
    Yu, H., Liu, S., Liu, J.: A new navigation method based on reinforcement learning and rough sets. In: Proceedings of International Conference on Machine Learning and Cybernetics, pp. 1093–1098 (2008)Google Scholar
  56. 56.
    Watkins, C.: Learning from delayed rewards. Ph.D. thesis, Cambridge University, Cambridge, UK (1989)Google Scholar
  57. 57.
    Jeni, L., Istenes, Z., Szemes, P., Hashimoto, H.: Robot navigation framework based on reinforcement learning for intelligent space. In: Proceedings of International Conference on Human System Interactions, pp. 761–766 (2008)Google Scholar
  58. 58.
    Dietterich, D.: Hierarchical reinforcement learning with MAXQ value function decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)MathSciNetMATHGoogle Scholar
  59. 59.
    Makar, R., Mahadevan, S., Ghavamzadeh, M.: Hierarchical multi-agent reinforcement learning. In: Proceedings of International Conference on Autonomous Agents, pp. 246–253 (2001)Google Scholar
  60. 60.
    Stone, P., Sutton, R.: Scaling reinforcement learning toward robocup soccer. In: Proceedings of International Conference on Machine Learning, pp. 537–544 (2001)Google Scholar
  61. 61.
    Voyles, R., Choset, H.: Editorial: search and rescue robots. J. Field Robot. 25(1), 1–2 (2008)CrossRefGoogle Scholar
  62. 62.
    Wang, J., Lewis, M., Gennari, J.: A game engine based simulation of the NIST urban search and rescue arenas. In: Proceedings of the 2003 Winter Simulation Conference, pp. 1039–1045 (2003)Google Scholar
  63. 63.
    Sourceforge: Usarsim. (2012). URL http://sourceforge.net/apps/mediawiki/usarsim/
  64. 64.
    Tsalatsanis, A., Yalcin, A., Valavanis, K.: Dynamic task allocation in cooperative robot teams. Robotica 30(5), 721–730 (2012)CrossRefGoogle Scholar
  65. 65.
    Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. J. Field Robot. 25(4), 912–926 (2009)Google Scholar
  66. 66.
    Di Paola, D., Naso, D., Turchiano, B.: Consensus-based robust decentralized task assignment for heterogeneous robot networks. In: Proceedings of American Control Conference, pp. 4711–4716 (2011)Google Scholar
  67. 67.
    Zhang, K., Collins Jr. E. G. , Shi, D.: Centralized and distributed task allocation in multi-robot teams via a stochastic clustering auction. ACM Trans. Auton. Adap. 7(2), Article 21 (2012)Google Scholar
  68. 68.
    Khamis, A., Elmogy, A., Karray, F.: Complex task allocation in mobile surveillance systems. J. Intell. Robot. Syst. 64, 33–55 (2011)CrossRefGoogle Scholar
  69. 69.
    Iwano, Y., Osuka, K., Amano, H.: Posture manipulation for rescue activity via small traction robots. In: Proceedings of 2005 IEEE International Workshop on Safety, Security and Rescue Robots, pp. 87–92 (2005)Google Scholar
  70. 70.
    Yim, M., Laucharoen, J.: Towards small robot aided victim manipulation. J. Intell. Robot. Syst. 64(1), 119–139 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Autonomous Systems and Biomechatronics Laboratory, Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations