Journal of Intelligent & Robotic Systems

, Volume 72, Issue 3–4, pp 591–613 | Cite as

Rover-Based Autonomous Science by Probabilistic Identification and Evaluation

  • Marc J. Gallant
  • Alex Ellery
  • Joshua A. Marshall
Article

Abstract

Autonomous science augments the capabilities of planetary rovers by shifting the identification and selection of science targets from remote operators to the rover itself. This shift frees the rover from wasteful idle time and allows for more selective data collection. This paper presents an approach to autonomous science that is comprised of three components: a Bayesian network that uses image data to identify features; an evaluation algorithm that selects the best features; and, a path-planning algorithm that guides the rover to the most scientifically valuable features. Within this framework, the effectiveness of pairing a larger prime rover with a smaller scout rover to improve autonomous science is investigated. Laboratory-based experiments were used to validate the effectiveness of the Bayesian network for feature identification and the scoring algorithm that has been developed for feature evaluation. Simulations were used to compare the traditional use of a solo prime rover to that of also employing a scout. The results presented here indicate that the inclusion of a scout rover can allow the prime rover to avoid pitfalls or routes with low scientific value.

Keywords

Autonomous science  Planetary robotics Bayesian networks 

Mathematics Subject Classifications (2010)

68T40 62F15 62P30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baerg, M., Beck, J., Hulme, S., Lievense, S., Tozzi, E., Viotti, M., Webster, G.: Jet propulsion laboratory: mars science laboratory. http://mars.jpl.nasa.gov/msl/mission/technology/insituexploration/planetarymobility/ (2011). Retrieved 29 April 2011
  2. 2.
    Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II state of the art. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)CrossRefGoogle Scholar
  3. 3.
    Bak, M., Poulsen, N.K., Ravn, O.: Path following mobile robot in the presence of velocity constraints. Tech. rep., Informatics and Mathematical Modelling, Technical University of Denmark (2001)Google Scholar
  4. 4.
    Carsten, J., Rankin, A., Ferguson, D., Stentz, A.: Global path planning on board the Mars Exploration Rovers. In: 2007 IEEE Aerospace Conference, pp. 1–11 (2007)Google Scholar
  5. 5.
    Castano, R., Estlin, T., Anderson, R.C., Gaines, D.M., Castano, A., Bornstein, B., Chouinard, C., Judd, M.: Oasis: onboard autonomous science investigation system for opportunistic rover science. JFR 24, 379–397 (2007)Google Scholar
  6. 6.
    Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): part I the essential algorithms. IEEE Robot. Autom. Mag. 2, 99–110 (2006)CrossRefGoogle Scholar
  8. 8.
    Ferguson, D., Stentz, A.: The Field D* algorithm for improved path planning and replanning in uniform and non-uniform cost environments. Tech. Rep. CMU-RI-TR-05-19, Robotics Institute, Carnegie Mellon University (2005)Google Scholar
  9. 9.
    Guo, J., Liu, L.: A study of improvement of D* algorithms for mobile robot path planning in partial unknown environments. Kybernetes 39, 935–945 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  11. 11.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  12. 12.
    Jet Propulsion Laboratory: Mars Pathfinder Frequently Asked Questions. http://mars.jpl.nasa.gov/MPF/rover/faqs_sojourner.html#data%20rate (2013). Retrieved 17 Jan 2013
  13. 13.
    Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: The analysis of a simple k-means clustering algorithm. Tech. Rep. CAR-TR-937, Center for Automation Research, University of Maryland (2000)Google Scholar
  14. 14.
    Mobile Robots: Pioneer 3-DX and AT specifications. http://www.mobilerobots.com/PDFs/P3ATDX%20Datasheet.pdf (2011). Retrieved 26 July 2011
  15. 15.
    Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. In: Proceedings of the AAAI Conference of Artificial Intelligence (AAAI), pp. 1177–1183 (2007)Google Scholar
  16. 16.
    Nash, A., Koenig, S., Likhachev, M.: Incremental Phi*: incremental any-angle path planning on grids. In: Proceedings of the 21st International jont Conference on Artifical Intelligence, pp. 1824–1830. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2009)Google Scholar
  17. 17.
    Point Grey Research: Stereo Vision Camera Catalogue. http://www.ptgrey.com/products/Point_Grey_stereo_catalog.pdf (2011). Retrieved 19 May 2011
  18. 18.
    Portigliotti, S., Dumontel, M., Capuano, M., Lorenzoni, L.: Landing site targeting and constraints for EXOMARS 2016 mission. In: International Planetary Probe Workshop (2010)Google Scholar
  19. 19.
    Rebane, G., Pearl, J.: The recovery of causal poly-trees from statistical data. In: 3rd Workshop on Uncertainty in AI, pp. 175–182 (1987)Google Scholar
  20. 20.
    Thompson, D., Niekum, S., Smith, T., Wettergreen, D.: Automatic detection and classification of features of geologic interest. In: IEEE Aerospace Conference, pp. 366–377 (2005)Google Scholar
  21. 21.
    Wagner, M., Apostolopoulos, D., Shillcutt, K., Shamah, B., Simmons, R., Whittaker, W.: The science autonomy system of the nomad robot. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1742–1749 (2001)Google Scholar
  22. 22.
    Woods, M., Shaw, A., Barnes, D., Price, D., Long, D., Pullan, D.: Autonomous science for an exomars rover–like mission. JFR 26(4), 358–390 (2009)Google Scholar
  23. 23.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marc J. Gallant
    • 1
  • Alex Ellery
    • 2
  • Joshua A. Marshall
    • 3
  1. 1.Mining Systems Laboratory, Department of Electrical and Computer EngineeringQueen’s UniversityKingstonCanada
  2. 2.Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada
  3. 3.Mining Systems Laboratory, The Robert M. Buchan Department of MiningQueen’s UniversityKingstonCanada

Personalised recommendations