Journal of Intelligent & Robotic Systems

, Volume 76, Issue 1, pp 73–117 | Cite as

Environmental Hazard Analysis - a Variant of Preliminary Hazard Analysis for Autonomous Mobile Robots

  • Sanja Dogramadzi
  • Maria Elena Giannaccini
  • Christopher Harper
  • Mohammad Sobhani
  • Roger Woodman
  • Jiyeon Choung
Article

Abstract

Robot manufacturers will be required to demonstrate objectively that all reasonably foreseeable hazards have been identified in any robotic product design that is to be marketed commercially. This is problematic for autonomous mobile robots because conventional methods, which have been developed for automatic systems do not assist safety analysts in identifying non-mission interactions with environmental features that are not directly associated with the robot’s design mission, and which may comprise the majority of the required tasks of autonomous robots. In this paper we develop a new variant of preliminary hazard analysis that is explicitly aimed at identifying non-mission interactions by means of new sets of guidewords not normally found in existing variants. We develop the required features of the method and describe its application to several small trials conducted at Bristol Robotics Laboratory in the 2011–2012 period.

Keywords

Hazard analysis Environmental survey Autonomous Mobile robot Safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10846_2013_20_MOESM1_ESM.pdf (125 kb)
(PDF 124 KB)
10846_2013_20_MOESM2_ESM.pdf (77 kb)
(PDF 76.5 KB)

References

  1. 1.
    Alami, R., Albu-Schaeffer, A., Bicchi, A., Bischoff, R., Chatila, R., De Luca, A., De Santis, A., Giralt, G., Guiochet, J., Hirzinger, G., Ingrand, F., Lippiello, V., Mattone, R., Powell, D., Sen, S., Siciliano, B., Tonietti, G., Villani, L.: Safe and dependable physical human-robot interaction in anthropic domains: State of the art and challenges. Proc. IROS’06 Workshop on pHRI - Physical Human-Robot Interaction in Anthropic Domains (2006)Google Scholar
  2. 2.
    Alexander, R., Herbert, N., Kelly, T.: The role of the human in an autonomous system. Proceedings of the 4th IET System Safety Conference (2009)Google Scholar
  3. 3.
    ARP 4761: Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment. Society of Automotive Engineers (1996)Google Scholar
  4. 4.
    Bonasso, P., Kortenkamp, D.: Using a layered control architecture to alleviate planning with incomplete information. Proceedings of the AAA Spring Symposium on Planning with Incomplete Information for Robot Problems, pp. 1–4 (1996)Google Scholar
  5. 5.
    Brooks, R.: Cambrian Intelligence: The Early History of the New AI. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Böhm, P., Gruber, T.: A novel hazop study approach in the rams analysis of a therapeutic robot for disabled children. Proceedings of the 29th International Conference on Computer Safety, Reliability, and Security, vol. 6351, pp. 15–27 (2010)Google Scholar
  7. 7.
    Choung, J.: Safety analysis & simulation of a guide robot for the elderly in care home, MSc Dissertation, University of Bristol (2012)Google Scholar
  8. 8.
    Eliot, C.E.: What is a reasonable argument in law? Proc. 8th GSN User Club Meeting, York UK, 2007 December (2007)Google Scholar
  9. 9.
    Giannaccini, M.E., Sobhani, M., Dogramadzi, S., Harper, C.: Investigating real world issues in Human Robot Interaction: Physical and Cognitive solutions for a safe robotic system. Proc. ICRA 2013, IEEE (2013)Google Scholar
  10. 10.
    Giuliani, M., Lenz, C., Mller, T., Rickert, M., Knoll, A.: Design principles for safety in human-robot interaction. Int. J. Social Robot. 2(3), 253–274 (2010)CrossRefGoogle Scholar
  11. 11.
    Goodrich, M., Schultz, A.: Human-robot interaction: a survey. Found. Trends Hum. Comput. Interact. 1(3), 203–275 (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Grigore, E.C., Eder, K., Pipe, A.G., Melhuish, C., Leonards, U.: Joint action understanding improves Robot-to-Human object handover. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on IEEE, pp. 4622–4629 (2013)Google Scholar
  13. 13.
    Guiochet, J., Baron, C.: UML based risk analysis - Application to a medical robot. Proc. of the Quality Reliability and Maintenance 5th International Conference, Oxford, UK, pp. 213–216, Professional Engineering Publishing, I Mech E. April, 2004 (2004)Google Scholar
  14. 14.
    Guiochet, J., Martin-Guillerez, D., Powell, D.: Experience with model-based user-centered risk assessment for service robots. Proceedings of the 2010 IEEE 12th International Symposium on High-Assurance Systems Engineering, pp 104–113 (2010)Google Scholar
  15. 15.
    Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for safe robots: measurements, analysis and new insights. Int. J. Robotics Res. 28(11–12), 1507–1527 (2009)CrossRefGoogle Scholar
  16. 16.
    Haddadin, S., Albu-Schaffer, A., Hirzinger, G.: Soft-tissue injury in robotics. In: Robotics and Automation (ICRA), IEEE International Conference on 2010, pp. 3426–3433. IEEE (2010)Google Scholar
  17. 17.
    Harper, C., Giannaccini, M.E., Woodman, R., Dogramadzi, S., Pipe, T., Winfield, A.: Challenges for the hazard identification process of autonomous mobile robots. 4th Workshop on Human-Friendly Robotics Enschede, Netherlands (2011)Google Scholar
  18. 18.
    Heinzmann, J., Zelinsky, A.: Quantitative safety guarantees for physical human-robot interaction. Int. J. Robot. Res. 22(7), 479–504 (2003)CrossRefGoogle Scholar
  19. 19.
    IEC 61882: Hazard and operability studies (HAZOP studies)-Application Guide, IEC (2001)Google Scholar
  20. 20.
    Ikuta, K., Ishii, H., Makoto, N.: Safety evaluation method of design and control for human-care robots. Int. J. Robot. Res. 22(5), 281–298 (2003)CrossRefGoogle Scholar
  21. 21.
    ISO/FDIS 13482: Robots and robotic devices - Safety requirements - Non-medical personal care robot. International Organization for Standardization (2013)Google Scholar
  22. 22.
    Kirwan, B., Ainsworth, L.K.: A Guide to Task Analysis: The Task Analysis Working Group. Taylor & Francis, London (1992)Google Scholar
  23. 23.
    Kulic, D., Croft, E.: Strategies for safety in human robot interaction. Proceedings of IEEE International Conference on Advanced Robotics, pp. 644–649 (2003)Google Scholar
  24. 24.
    Kulic, D., Croft, E.: Pre-collision safety strategies for human-robot interaction. Auton. Robot. 22(2), 149–164 (2007)CrossRefGoogle Scholar
  25. 25.
    Lankenau, A., Meyer, O.: Formal methods in robotics: Fault tree based verification. Proceedings of Quality Week (1999)Google Scholar
  26. 26.
    Larsen, T., Hansen, S.: Evolving composite robot beha- viour – a modular architecture. Proceedings of RoMoCo’05, pp. 271–276 (2005)Google Scholar
  27. 27.
    Lussier, B., Chatila, R., Ingrand, F., Killijian, M.O., Powell, D.: On fault tolerance and robustness in autonomous systems. In: Proceedings of the 3rd IARP-IEEE/RASEURON Joint Workshop on Technical Challenges for Dependable Robots in Human Environments (2004)Google Scholar
  28. 28.
    Martin-Guillerez, D., Guiochet, J., Powell, D., Zanon, C.: A UML-based method for risk analysis of human-robot interactions. 2nd International Workshop on Software Engineering for Resilient Systems, pp. 32–41 (2010)Google Scholar
  29. 29.
    Nehmzow, U.: Flexible control of mobile robots through autonomous competence acquisition. Meas. Control 28, 48–54 (1995)Google Scholar
  30. 30.
    Nehmzow, U., Kyriacou, T., Iglesias, R., Billings, S.: Robotmodic: modelling, identification and characterisation of mobile robots. Proc. TAROS 2004 (2004)Google Scholar
  31. 31.
    Owens, B.D., Stringfellow Herring, M., Dulac, N., Leveson, N.G.: Application of a Safety-Driven Design Methodology to an Outer Planet Exploration Mission, IEEEAC paper #1279, Version 8, Updated December 14 (2007)Google Scholar
  32. 32.
    Petterson, O.: Execution monitoring in Robotics: A survey, robotics and autonomous systems 53(2), 73–88 (2005)Google Scholar
  33. 33.
    Pumfrey, D.: The principled design of computer system safety analyses. PhD Thesis, University of York (1999)Google Scholar
  34. 34.
    Rouff, C.A., Hinchey, M., Rash, J., Truszkowski, W., Gordon-Spears, D. (eds.): Agent Technology from a Formal Perspective. Springer (2006)Google Scholar
  35. 35.
    Sobhani, M.M.: Fault Detection ad Recovery in HRI in Rescue Robotics. MSc Dissertation, Bristol Robotics Laboratory (2012)Google Scholar
  36. 36.
    UK MoD: HAZOP Studies on Systems Containing Programmable Electronics. Defence Standard 00-58 Issue 2, UK Ministry of Defence (2000)Google Scholar
  37. 37.
    UK National Archives 1974, UK Health and Safety at Work Act 1974, available freely over the internet at http://www.legislation.gov.uk/. Accessed 30 Sept 2013 (1974)
  38. 38.
    UK National Archives 1987, UK Consumer Protection Act 1987, available freely over the internet at http://www.legislation.gov.uk/. Accessed 30 Sept 2013 (1987)
  39. 39.
    Woodman, R., Winfield, A.F.T., Harper, C., Fraser, M.: Building safer robots: Safety driven control. Int. J. Robot. Res. 31(13), 1603–1626 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sanja Dogramadzi
    • 1
  • Maria Elena Giannaccini
    • 1
  • Christopher Harper
    • 1
  • Mohammad Sobhani
    • 1
  • Roger Woodman
    • 1
  • Jiyeon Choung
    • 1
  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK

Personalised recommendations