Journal of Intelligent & Robotic Systems

, Volume 77, Issue 2, pp 281–298 | Cite as

Integrating Arduino-Based Educational Mobile Robots in ROS

  • André Araújo
  • David PortugalEmail author
  • Micael S. Couceiro
  • Rui P. Rocha


This article presents the full integration of compact educational mobile robotic platforms built around an Arduino controller board in the Robot Operating System (ROS). To decrease the development time, a driver interface in ROS was created so as to provide hardware abstraction and intuitive operation mode, thus allowing researchers to focus essentially in their main research motivation, e.g., search and rescue, multi-robot surveillance or swarm robotics. Moreover, the full integration in ROS provided by the driver enables the use of several tools for data analysis, easiness of interaction between multiple robots, use of different sensors and teleoperation devices, thereby targeting engineering education. To validate the approach, diverse experimental tests were conducted using different Arduino-based robotic platforms.


Arduino-based robots ROS Educational robotics Sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MP4 60.7 MB)


  1. 1.
    Petrina, A.M.: Advances in robotics. In: Automatic Documentation and Mathematical Linguistics, vol. 45, No. 2, pp. 43–57. Allerton Press, Inc. (2011)Google Scholar
  2. 2.
    Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991)CrossRefGoogle Scholar
  3. 3.
    Portugal, D., Rocha, R.P.: Distributed multi-robot patrol: a scalable and fault-tolerant framework. Robot. Auton. Syst. 61(12), 1572–1587, Elsevier (2013)CrossRefGoogle Scholar
  4. 4.
    Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F.: A PSO multi-robot exploration approach over unreliable MANETs. Adv. Robot. 27(16), 1221–1234, Robotics Society of Japan (2013)CrossRefGoogle Scholar
  5. 5.
    Warren, J.-D., Adams, J., Molle, H.: Arduino robotics. Springer Science and Business Media (2011)Google Scholar
  6. 6.
    Araújo, A., Portugal, D., Couceiro, M., Figueiredo, C., Rocha, R.: TraxBot: assembling and programming of a mobile robotic platform. In: Proc. of the 4th International Conference on Agents and Artificial Intelligence (ICAART 2012). Vilamoura (2012)Google Scholar
  7. 7.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: Proc. Open-Source Software workshop of the International Conference on Robotics and Automation. Kobe (2009)Google Scholar
  8. 8.
    Gerkey, B., Vaughan, R., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proc. of the Intl. Conf. on Advanced Robotics, pp. 317–323. Coimbra (2003)Google Scholar
  9. 9.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. In: IEEE Transactions on Robotics (2006)Google Scholar
  10. 10.
    Rusu, R., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proc. of International Conference on Robotics and Automation (ICRA 2011). Shanghai (2011)Google Scholar
  11. 11.
    Couceiro, M.S., Figueiredo, C.M., Luz, J.M., Ferreira, N.M.F., Rocha, R.P.: A low-cost educational platform for swarm robotics. Int. J. Robot. Educ. Art 2(1), 1–15 (2012)CrossRefGoogle Scholar
  12. 12.
    Park, I.W., Kim, J.O.: Philosophy and strategy of minimalism-based user created robots (UCRs) for educational robotics - education, technology and business viewpoint. Int. J. Robot. Educ. Art 1(1), 26–38 (2011)Google Scholar
  13. 13.
    Kuipers, M.: Localization with the iRobot create. In: Proceedings of the 47th Annual Southeast Regional Conference ACM (ACM-SE 47). Clemson (2009)Google Scholar
  14. 14.
    Bagnall, B.: Maximum LEGO NXT: Building Robots with Java Brains. Variant Press, Winnipeg, Manitoba (2007)Google Scholar
  15. 15.
    Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proc. of the 9th Conf. on Autonomous Robot Systems and Competitions 1(1):59–65 (2009)Google Scholar
  16. 16.
    Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Mondada, F.: The MarXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Int. Conf. on Intelligent Robots and Systems. Taipei, 18–22 Oct (2010)Google Scholar
  17. 17.
    Cummins, J., Azhar, M.Q., Sklar, E.: Using surveyor SRV-1 robots to motivate CS1 students. In: Proceedings of the AAAI 2008 Artificial Intelligence Education Colloquium (2008)Google Scholar
  18. 18.
    Mitrović Srđan, T.: Design of fuzzy logic controller for autonomous garaging of mobile robot. J. Autom. Control 16.1, 13–16 (2006)CrossRefGoogle Scholar
  19. 19.
    Zaman, S., Slany, W., Steinbauer, G.: ROS-based mapping, localization and autonomous navigation using a pioneer 3-DX robot and their relevant issues. In: Proc. of the IEEE Saudi International Electronics, Communications and Photonics Conference. Riad (2011)Google Scholar
  20. 20.
    Linner, T., Shrikathiresan, A., Vetrenko, M., Ellmann, B.: Modeling and operating robotic environent using Gazebo/ROS. In: Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC2011), pp. 957–962. Seoul (2011)Google Scholar
  21. 21.
    Wunsche, B., Chen, I., MacDonald, B.: Mixed reality simulation for mobile robots. In: Proc. of International Conference on Robotics and Automation (ICRA 2009). Kobe (2009)Google Scholar
  22. 22.
    Wagner, A., Arkin, R.: Robot deception: recognizing when a robot should deceive. In: Proc. of Computational Intelligence in Robotics and Automation (CIRA). Daejeon (2009)Google Scholar
  23. 23.
    Rocha, R., Dias, J., Carvalho, A.: Cooperative multi-robot systems: a study of vision-based 3-D mapping using information theory. In: Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA’2005), pp. 386–391. Barcelona (2005)Google Scholar
  24. 24.
    Kneip, L., Tâche, F., Caprari, G., Siegwart, R.: Characterization of the compact Hokuyo URG-04LX 2D laser range scanner. In: Proceedings of the IEEE International Conference on Robotics and Automation. Kobe (2009)Google Scholar
  25. 25.
    Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Proc. of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR’2011), pp. 50–55. Kyoto (2011)Google Scholar
  26. 26.
    Couceiro, M.S., Portugal, D., Rocha, R.P.: A collective robotic architecture in search and rescue scenarios. In: Proc. of 28th Symposium on Applied Computing (SAC 2013), pp. 64–69. Coimbra (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • André Araújo
    • 1
  • David Portugal
    • 1
    Email author
  • Micael S. Couceiro
    • 1
  • Rui P. Rocha
    • 1
  1. 1.Institute of Systems and RoboticsUniversity of CoimbraCoimbraPortugal

Personalised recommendations