Advertisement

Journal of Intelligent & Robotic Systems

, Volume 71, Issue 3–4, pp 403–421 | Cite as

Multirobot Localization in Highly Symmetrical Environments

  • Fabrizio Abrate
  • Basilio Bona
  • Marina Indri
  • Stefano Rosa
  • Federico Tibaldi
Article

Abstract

The paper addresses and solves the problem of multirobot collaborative localization in highly symmetrical 2D environments, such as the ones encountered in logistic applications. Because of the environment symmetry, the most common localization algorithms may fail to provide a correct estimate of the position and orientation of the robot, if its initial position is not known, no specific landmark is introduced, and no absolute information (e.g., GPS) is available: the robot can estimate its position with respect to the walls of the corridor, but it could be critical to determine in which corridor it is actually moving. The proposed algorithm is based upon a particle filter cooperative Monte Carlo Localization (MCL) and implements a three-stage procedure for the global localization and the accurate position tracking of each robot of the team. Online simulations and experimental tests, which investigate different situations with respect to the number of robots involved and their initial positions, show how the proposed solution can lead to the global localization of each robot, with a precision sufficient to be used as starting point for the subsequent robot tracking.

Keywords

Multi-robot Localization Symmetric environments Logistic areas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Switching multirobot collaborative localization in symmetrical environments. In: IEEE International Conference on Intelligent Robots Systems (IROS 2008), 2nd Workshop on Planning, Perception and Navigation for Intelligent Vehicles (PPNIV) (2008)Google Scholar
  2. 2.
    Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Three state multirobot collaborative localization in symmetrical environments. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 1–6, 7 May 2009Google Scholar
  3. 3.
    Ahn, S., Choi, M., Choi, J., Chung, W.K.: Data association using visual object recognition for ekf-slam in home environment. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2588–2594 (2006)Google Scholar
  4. 4.
    Di Marco, M., Garulli, A., Giannitrapani, A., Vicino, A.: Simultaneous localization and map building for a team of cooperating robots: a set membership approach. IEEE Trans. Robot. Autom. 19(2), 238–249 (2003)CrossRefGoogle Scholar
  5. 5.
    Fox, D.: Kld-sampling: adaptive particle filters. In: Advances in Neural Information Processing Systems 14, pp. 713–720. MIT Press (2001)Google Scholar
  6. 6.
    Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Auton. Robots 8(3), 325–344 (2000)CrossRefGoogle Scholar
  7. 7.
    Gasparri, A., Panzieri, S., Pascucci, F.: A fast conjunctive resampling particle filter for collaborativemulti-robot localization. In: Workshop on Formal Models and Methods for Multi-Robot Systems, Estoril, Portugal (2008)Google Scholar
  8. 8.
    Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: 11th Int. Conf. on Advanced Robotics (ICAR 2003), pp. 317–323 (2003)Google Scholar
  9. 9.
    Göring, D., Burkhard, H.-D.: Multi robot object tracking and self localization using visual percept relations. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 31–36 (2006)Google Scholar
  10. 10.
    Karam, N., Chausse, F., Aufrere, R., Chapuis, R.: Localization of a group of communicating vehicles by state exchange. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 519–524 (2006)Google Scholar
  11. 11.
    Kiva systems. Website. http://www.kivasystems.com. Accessed 11 April 2012
  12. 12.
    Martinelli, A.: Improving the precision on multi robot localization by using a series of filters hierarchically distributed. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1053–1058 (2007)Google Scholar
  13. 13.
    Matsubara, T., Kubo, M., Murachi, Y.: Particle filter for collaborative multi-robot localization tollerant to recognition error. Adv. Robotics 24(15), 2043–2058 (2010)CrossRefGoogle Scholar
  14. 14.
    Mobilesim. Website. http://robots.mobilerobots.com/MobileSim/. Accessed 11 April 2012
  15. 15.
    Mourikis, A.I., Roumeliotis, S.I.: Performance analysis of multirobot cooperative localization. IEEE Trans. Robot. 22(4), 666–681 (2006)CrossRefGoogle Scholar
  16. 16.
    Panzieri, S., Pascucci, F., Setola, R.: Multirobot localization using interlaced extended kalman filter. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2816–2821 (2006)Google Scholar
  17. 17.
    Peasgood, M., Clark, C., McPhee, J.: Localization of multiple robots with simple sensors. In: IEEE Int. Conf. on Mechatronics and Automation, pp. 671–676 (2005)Google Scholar
  18. 18.
    Pillonetto, G., Carpin, S.: Multirobot localization with unknown variance parameters. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1709–1714 (2007)Google Scholar
  19. 19.
    Radish: The robotics data set repository. Website. http://radish.sourceforge.net. Accessed 11 April 2012
  20. 20.
    Rekleitis, I., Dudek, G., Milios, E.: Probabilistic cooperative localization and mapping in practice. In: IEEE Int. Conf. on Robotics and Automation, pp. 1907–1912 (2003)Google Scholar
  21. 21.
    Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)CrossRefGoogle Scholar
  22. 22.
    Seegrid. Website. http://www.seegrid.com/. Accessed 11 April 2012
  23. 23.
    Taylor, C.J., Spletzer, J.: A bounded uncertainty approach to cooperative localization using relative bearing constraints. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2500–2506 (2007)Google Scholar
  24. 24.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fabrizio Abrate
    • 1
  • Basilio Bona
    • 2
  • Marina Indri
    • 2
  • Stefano Rosa
    • 2
  • Federico Tibaldi
    • 2
  1. 1.General Motors Powertrain Europe S.r.l.TorinoItaly
  2. 2.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations