Advertisement

Control and Navigation Framework for Quadrotor Helicopters

  • Amr Nagaty
  • Sajad Saeedi
  • Carl Thibault
  • Mae Seto
  • Howard Li
Article

Abstract

This paper presents the development of a nonlinear quadrotor simulation framework together with a nonlinear controller. The quadrotor stabilization and navigation problems are tackled using a nested loops control architecture. A nonlinear Backstepping controller is implemented for the inner stabilization loop. It asymptotically tracks reference attitude, altitude and heading trajectories. The outer loop controller generates the reference trajectories for the inner loop controller to reach the desired waypoint. To ensure boundedness of the reference trajectories, a PD controller with a saturation function is used for the outer loop. Due to the complexity involved in controller development and testing, a simulation framework has been developed. It is based on the Gazebo 3D robotics simulator and the Open Dynamics Engine (ODE) library. The framework can effectively facilitate the development and validation of controllers. It has been released and is available at Gazebo quadrotor simulator (2012).

Keywords

Quadrotor Nonlinear control Backstepping Navigation Simulation framework Gazebo Open dynamics engine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gazebo quadrotor simulator. Available online http://sourceforge.net/projects/gazebo-quad-sim. Accessed 10 Mar 2012
  2. 2.
    Hoffmann, G., Waslander, S., Vitus, M., Huang, H., Gillula, J., Pradeep, V., Tomlin, C.: Stanford testbed of autonomous rotorcraft for multi-agent control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 404–405 (2009)Google Scholar
  3. 3.
    Bouabdallah, S., Noth, A., Siegwart, R.: Pid vs lq control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, (IROS 2004), Proceedings, vol. 3, pp. 2451–2456. 2 Sept – Oct (2004)Google Scholar
  4. 4.
    Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Robotics and Automation 2005. ICRA 2005, pp. 2247–2252 (2005)Google Scholar
  5. 5.
    Mokhtari, A., Benallegue, A., Daachi, B.: Robust feedback linearization and gh infin; controller for a quadrotor unmanned aerial vehicle. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, (IROS 2005), pp. 1198–1203 (2005)Google Scholar
  6. 6.
    Waslander, S., Hoffmann, G., Jang, J.S., Tomlin, C.: Multi-agent quadrotor testbed control design: integral sliding mode vs. reinforcement learning. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, (IROS 2005), pp. 3712–3717 (2005)Google Scholar
  7. 7.
    Khalil, H.: Nonlinear Systems. Prentice Hall (2002)Google Scholar
  8. 8.
    Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260 (2006)Google Scholar
  9. 9.
    Colorado, J., Barrientos, A., Martinez, A., Lafaverges, B., Valente, J.: Mini-quadrotor attitude control based on hybrid backstepping amp; frenet-serret theory. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1617–1622 (2010)Google Scholar
  10. 10.
    Mancini, A., Cesetti, A., Iual, A., Frontoni, E., Zingaretti, P., Longhi, S.: A framework for simulation and testing of uavs in cooperative scenarios. J. Intell. Robot. Syst. 54, 307–329 (2009)CrossRefGoogle Scholar
  11. 11.
    Rotorlib: Available online http://www.rtdynamics.com. Accessed 10 Mar 2012
  12. 12.
    Jsbsim: Available online http://jsbsim.sourceforge.net. Accessed 10 Mar 2012
  13. 13.
    Flightgear: Available online http://www.flightgear.org. Accessed 10 Mar 2012
  14. 14.
    Gazebo 3d Robotics Simulator: Available online http://playerstage.sourceforge.net/gazebo/gazebo.html. Accessed 10 Mar 2012
  15. 15.
    Open Dynamics Engine Library: Available online http://www.ode.org/. Accessed 10 Mar 2012
  16. 16.
    Gazebo Quad Sim: Available online http://sourceforge.net/projects/gazeboquadrotor. Accessed 10 Mar 2012
  17. 17.
    Lee, D., Jin Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7, 419–428 (2009)CrossRefGoogle Scholar
  18. 18.
    Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. Ph.D. dissertation, Lausanne (2007)Google Scholar
  19. 19.
    Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)CrossRefGoogle Scholar
  20. 20.
    Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and adaptive control design, ser. Adaptive and learning systems for signal processing, communications, and control. Wiley (1995)Google Scholar
  21. 21.
    Robot Operating System: Available online http://www.ros.org/. Accessed 10 Mar 2012

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Amr Nagaty
    • 1
  • Sajad Saeedi
    • 1
  • Carl Thibault
    • 1
  • Mae Seto
    • 2
  • Howard Li
    • 1
  1. 1.COllaboration Based Robotics and Automation (COBRA) Laboratory, Department of Electrical and Computer EngineeringUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Mechanical EngineeringUniversity of New BrunswickFrederictonCanada

Personalised recommendations