Journal of Intelligent & Robotic Systems

, Volume 71, Issue 2, pp 159–178 | Cite as

Obstacle Modelling Oriented to Safe Motion Planning and Control for Planar Rigid Robot Manipulators

  • Luca Massimiliano Capisani
  • Tullio Facchinetti
  • Antonella Ferrara
  • Alessandro Martinelli


Trajectory planning and tracking are crucial tasks in any application using robot manipulators. These tasks become particularly challenging when obstacles are present in the manipulator workspace. In this paper a n-joint planar robot manipulator is considered and it is assumed that obstacles located in its workspace can be approximated in a conservative way with circles. The goal is to represent the obstacles in the robot configuration space. The representation allows to obtain an efficient and accurate trajectory planning and tracking. A simple but effective path planning strategy is proposed in the paper. Since path planning depends on tracking accuracy, in this paper an adequate tracking accuracy is guaranteed by means of a suitably designed Second Order Sliding Mode Controller (SOSMC). The proposed approach guarantees a collision-free motion of the manipulator in its workspace in spite of the presence of obstacles, as confirmed by experimental results.


Motion control Manipulator kinematics Path planning for manipulators Dynamics Animation and simulation Robust control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartolini, G., Ferrara, A., Levant, A., Usai, E.: On second order sliding mode controllers. In: Young, K.D., Ozguner, U. (eds.) Lecture Notes on Control and Information Science, vol. 247, pp. 329–350. Springer (1999)Google Scholar
  3. 3.
    Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second order sliding mode control. IEEE Trans. Automat. Contr. 43(2), 241–246 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bartolini, G., Pisano, A., Usai, E.: Digital second-order sliding mode control for uncertain nonlinear systems. Automatica 37(9), 1371–1377 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Calanca, A., Capisani, L.M., Ferrara, A., Magnani, L.: An inverse dynamics-based discrete-time sliding mode controller for robot manipulators. In: Kozlowski, K. (ed.) Robot Motion and Control 2007, (LNCiS) Lecture Notes in Control and Information Sciences, n. 360, ch. 12, pp. 137–146. Springer, London, UK (2007)CrossRefGoogle Scholar
  6. 6.
    Capisani, L.M., Facchinetti, T., Ferrara, A.: Second order sliding mode real-time networked control of a robotic manipulator. In: Proc. 12th IEEE Conference on Emerging Technologies and Factory Automation, pp. 941–948. Patras, Greece (2007)Google Scholar
  7. 7.
    Capisani, L.M., Ferrara, A., Magnani, L.: MIMO identification with optimal experiment design for rigid robot manipulators. In: Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6. Zürich, Switzerland (2007)Google Scholar
  8. 8.
    Capisani, L.M., Ferrara, A., Magnani, L.: Second order sliding mode motion control of rigid robot manipulators. In: Proc. 46th IEEE Conference on Decision and Control, pp. 3691–3696. New Orleans, Louisiana, USA (2007)Google Scholar
  9. 9.
    Capisani, L.M., Ferrara, A., Magnani, L.: Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators. Int. J. Control 82(2), 365–377 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion, Theory, Algorithms and Implementations. MIT Press, Cambridge, Massachusetts, USA (2005)zbMATHGoogle Scholar
  11. 11.
    Colbaugh, R.D., Bassi, E., Benzi, F., Trabatti, M.: Enhancing the trajectory tracking performance capabilities of position-controlled manipulators. In: Proc. IEEE Industry Applications Conference, vol. 2, pp. 1170–1177. Rome, Italy (2000)Google Scholar
  12. 12.
    Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., Kuffner, J.: Bispace planning: Concurrent multi-space exploration. In: Robotics: Science and Systems. Zürich, Switzerland (2008)Google Scholar
  13. 13.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London, UK (1998)Google Scholar
  14. 14.
    Guldner, J., Utkin, V.I., Hashimoto, H., Harashima, F.: Obstacle avoidance in r n based on artificial harmonic potential fields. In: Proc. IEEE Conference on robotics and automation, vol. 3, pp. 3051–3056. Nagoya, Aichi, Japan (1995)Google Scholar
  15. 15.
    Hwang, Y.K., Ahuja, N.: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–31 (1992)CrossRefGoogle Scholar
  16. 16.
    Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London, UK (1995)zbMATHCrossRefGoogle Scholar
  17. 17.
    Keymeulen, D., Decuyper, J.: The fluid dynamics applied to mobile robot motion: the stream field method. In: Proc. IEEE Conference on Robotics and Automation, vol. 1, pp. 378–385. San Diego, California, USA (1994)Google Scholar
  18. 18.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 5(1), 90–98 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Oh Kim, J., Kosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)CrossRefGoogle Scholar
  20. 20.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)CrossRefGoogle Scholar
  21. 21.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, Massachusetts, USA (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lozano-Pérez, T.: A simple motion-planing algorithm for general robot manipulators. IEEE Trans. Robot. Autom. RA-3(3), 224–238 (1987)Google Scholar
  23. 23.
    Ralli, E., Hirzinger, G.: Fast path planning for robot manipulators using numerical potential fields in the configuration space. In: Proc. IEEE Intelligent Robots and Systems, pp. 1922–1929. Munich, Germany (1994)Google Scholar
  24. 24.
    Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  25. 25.
    Sáncez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Jarvis, R., Zelinsky, A. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 6, pp. 403–417. Springer Berlin / Heidelberg (2003)Google Scholar
  26. 26.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London, UK (2009)Google Scholar
  27. 27.
    Şucan, I.A., Kavraki, L.E.: Kinodynamic motion planning by interior-exterior cell exploration. In: Chirikjian, G., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol. 57, pp. 449–464. Springer Berlin / Heidelberg (2009)Google Scholar
  28. 28.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin, Germany (1992)zbMATHCrossRefGoogle Scholar
  29. 29.
    Zelek, J.S.: Dynamic path planning. In: Proc. IEEE Conference on Systems, Man and Cybernetics, pp. 1285–1290. Vancouver, British Columbia, Canada (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Luca Massimiliano Capisani
    • 1
  • Tullio Facchinetti
    • 1
  • Antonella Ferrara
    • 1
  • Alessandro Martinelli
    • 1
  1. 1.Dipartimento di Ingegneria Industriale e dell’InformazioneUniversity of PaviaPaviaItaly

Personalised recommendations