Journal of Intelligent & Robotic Systems

, Volume 68, Issue 3–4, pp 373–386 | Cite as

Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment

  • Antonio Vasilijevic
  • Bruno BorovicEmail author
  • Zoran Vukic


Rapid development of underwater technology during the last two decades yielded more affordable sensors and underwater vehicles, and, as a result, expanded their use from exclusively offshore industry towards smaller interdisciplinary research groups. Regardless of application, knowing the location of the vehicle operating underwater is crucial. Relatively inexpensive solution is sensor fusion based on a dynamic model of the vehicle aided by a Doppler Velocity Log and a Ultra-Short Base Line position system. Raw data from the sensors are highly asynchronous and susceptible to outliers, especially in shallow water environment. This paper presents detailed sensor analysis based on experimental data gathered in shallow waters, identifies outliers, presents an intuitive and simple sensor fusion algorithm and finally, discusses outlier rejection. The approach has been experimentally verified on medium size remotely operated vehicle.


USBL DVL Underwater localization Underwater vehicle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: Proc MCMC20067th IFAC Conference on Manoeuvring and Control of Marine Vehicles, Lisbon, Portugal, Invited paper (2006)Google Scholar
  2. 2.
    Miller, P., Farrell, J., Zhao, Y., Djapic, V.: Autonomous underwater vehicle navigation. IEEE J. Oceanic Eng. 35(3), 663–678 (2010)CrossRefGoogle Scholar
  3. 3.
    Hegrenaes, O., Hallingstad, O.: Model-aided ins with sea current estimation for robust underwater navigation. IEEE J. Oceanic Eng. 36(2), 316–337 (2011)CrossRefGoogle Scholar
  4. 4.
    Lee, P.-M., Jun, B.-H., Kim, K., Lee, J., Aoki, T., Hyakudome, T.: Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle. IEEE J. Oceanic Eng. 32(2), 327–345 (2007)CrossRefGoogle Scholar
  5. 5.
    Willumsen, A., Hallingstad, O., Jalving, B.: Integration of range, bearing and doppler measurements from transponders into underwater vehicle navigation systems. In: OCEANS 2006, pp. 1–6 (2006)Google Scholar
  6. 6.
    Jalving, B., Gade, K., Hagen, O., Vestgard, K.: A toolbox of aiding techniques for the hugin auv integrated inertial navigation system. In: OCEANS 2003. Proceedings, vol. 2, pp. 1146–1153 (2003)Google Scholar
  7. 7.
    Hegrenaes, O., Berglund, E., Hallingstad, O.: Model-aided inertial navigation for underwater vehicles. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008. pp. 1069–1076 (2008)Google Scholar
  8. 8.
    Rigby, P., Pizzaro, O., Williams, S.: Towards geo-referenced auv navigation through fusion of usbl and dvl measurements. In: OCEANS 2006, pp. 1–6 (2006)Google Scholar
  9. 9.
    Caruso, M.J.: Applications of magnetoresistive sensors in navigation systems. SAE Technical Paper 970602 (1997). doi: 10.4271/970602. Link:
  10. 10.
    “Compass heading using magnetometers,” Application Note 203, Honeywell.Google Scholar
  11. 11.
    Vasconselos, J.F., Elkaim, G., Silvestre, C., Oliveira, P., Cardeira, B.: A geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1293–1306 (2008)CrossRefGoogle Scholar
  12. 12.
    Fossen, T.I.: Guidance and Control of Ocean Vehicles, pp. 6–12. Wiley, Chichester, England (1994)Google Scholar
  13. 13.
    McPhail, S., Pebody, M.: Range-only positioning of a deep-diving autonomous underwater vehicle from a surface ship. IEEE J. Oceanic Eng. 34(4), 669–677 (2009)CrossRefGoogle Scholar
  14. 14.
    Philips, D.: An evaluation of usbl and sbl acoustic systems and the optimisation of methods of calibration—part 2. Hydrogr. J. 109, 10–20 (2003)Google Scholar
  15. 15.
    Cooper, D.: System manual for fusion usbl navigation systems. User Manual, pp. 145–148 (2006)Google Scholar
  16. 16.
    Calibration and verification of sonardyne usbl systems: White paper (2009)Google Scholar
  17. 17.
    Snyder, J.: Doppler velocity log (dvl) navigation for observation-class rovs. In: OCEANS 2010, pp. 1–9 (2010)Google Scholar
  18. 18.
    Fossen, T.I.: Marine Control Systems, p. 57. Marine Cybernetics, Trondheim, Norway (2002)Google Scholar
  19. 19.
    Koh, T., Lau, M., Seet, G., Low, E.: A control module scheme for an underactuated underwater robotic vehicle. J. Intell. Robot. Syst. 46(2), 43–58 (2006)CrossRefGoogle Scholar
  20. 20.
    Sebastian, E., Sotelo, M.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Robot. Syst. 49, 189–215 (2007)CrossRefGoogle Scholar
  21. 21.
    Refsnes, J.E., Sorensen, A.J.: Design of control system of torpedo shaped rov with experimental results. In: OCEANS ’04, MTS/IEEE TECHNO-OCEAN ’04, vol. 1, pp. 264–270 (2004)Google Scholar
  22. 22.
    Refsnes, J.E., Sorensen, A.J., Pettersen, K.Y.: Output feedback control of an auv with experimental results. In: Proceedings of the 15th Mediterranean Conference on Control & Automation, pp. 1–8 (2007)Google Scholar
  23. 23.
    Steinke, D., Buckham, B.: A kalman filter for the navigation of remotely operated vehicles. In: OCEANS, 2005. Proceedings of MTS/IEEE, vol. 1, pp. 581–588 (2005)Google Scholar
  24. 24.
    Fossen, T.I., Strand, J.P.: Passive nonlinear observer design for ships using lyapunov methods: experimental results with a supply vessel. Automatica 35, 3–16 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Merhav, S.: Aerospace Sensor Systems and Applications, p. 396. Springer, New York (1996)CrossRefGoogle Scholar
  26. 26.
    Alcocer, A., Oliveira, P., Pascoal, A.: Underwater acoustic positioning systems based on buoys with gps. In: Proceedings of 8th ECUA 06 (2006)Google Scholar
  27. 27.
    Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley, New York (2000)Google Scholar
  28. 28.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin Heidelberg (2010)Google Scholar
  29. 29.
    Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, New York (1993)Google Scholar
  30. 30.
    Caccia, M., Bono, R., Bruzzone, G., Veruggio, G.: Bottom-following for remotely operated vehicles. Control Eng. Pract. 11(4), 461–470 (2003)CrossRefGoogle Scholar
  31. 31.
    Augenstein, S., Rock, S.: Estimating inertial position and current in the midwater. In: Proceedings of the MTS/IEEE Oceans Conference and Exhibition (2008)Google Scholar
  32. 32.
    Vaganay, J., Bellingham, J.G., Leonard, J.J.: Outlier rejection for autonomous acoustic navigation. In: Proceedings of IEEE Int. Conf. Robotics and Automation, pp. 2174–2181, (1996)Google Scholar
  33. 33.
    Menold, P.H., Pearson, R.K., Allgower, F.: Online outlier detection and removal. In: Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), pp. 1110–1133 (1999)Google Scholar
  34. 34.
    Jouffroy, J., Opderbecke, J.: Underwater navigation using diffusion-based trajectory observers. IEEE J. Oceanic Eng. 32, 313–326 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Antonio Vasilijevic
    • 1
  • Bruno Borovic
    • 1
    Email author
  • Zoran Vukic
    • 1
  1. 1.Faculty of Electrical Engineering and Computing, Department of Control and Computer Engineering, Laboratory for Underwater Systems and TechnologiesUniversity of ZagrebZagrebCroatia

Personalised recommendations