Advertisement

Tracking a Ground Moving Target with a Quadrotor Using Switching Control

Nonlinear Modeling and Control
  • J. E. Gomez-Balderas
  • G. Flores
  • L. R. García Carrillo
  • R. Lozano
Article

Abstract

An unmanned aerial vehicle (UAV) stabilization strategy based on computer vision and switching controllers is proposed. The main goal of this system is to perform tracking of a moving target on ground. The architecture implemented consists of a quadrotor equipped with an embedded camera which provides real-time video to a computer vision algorithm where images are processed. A vision-based estimator is proposed, which makes use of 2-dimensional images to compute the relative 3-dimensional position and translational velocity of the UAV with respect to the target. The proposed estimator provides the required states measurements to a micro-controller for stabilizing the vehicle during flight. The control strategy consists of switching controllers, which allows making decisions when the target is lost temporarily or when it is out of the camera’s field of view. Real time experiments are presented to demonstrate the performance of the target-tracking system proposed.

Keywords

Switching controllers Tracking Control strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguiar, A.P., Hespanha, J.P.: Minimum-energy state estimation for systems with perspective outputs. IEEE Trans. Automat. Contr. 51(2), 226–241 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allen, P.K., Timcenko, A., Yoshimi, B., Michelman, P.: Trajectory filtering and prediction for automated tracking and grasping of a moving object. In: Proc. IEEE Conference on Robotics and Automation, pp. 1850–1856 (1992)Google Scholar
  3. 3.
    Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, Boston, MA (1988)MATHGoogle Scholar
  4. 4.
    Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27, 433–467 (1995)CrossRefGoogle Scholar
  5. 5.
    Bouabdallah, S., Siegwart, R.: Backstepping andd sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2259–2264 (2005)Google Scholar
  6. 6.
    Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker description of the algorithm. Tech. Rep., Intel Corporation Microprocessor Research Labs (2000)Google Scholar
  7. 7.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986)CrossRefGoogle Scholar
  8. 8.
    Carrillo, L.G., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad rotor using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011)CrossRefGoogle Scholar
  9. 9.
    Chitrakaran, V.K., Dawson, D.M., Dixon, W.E., Chen, J.: Identification of a moving objects velocity with a fixed camera. Automatica 41(3), 553–562 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ghosh, B.K., Loucks, E.P.: A realization theory for perspective systems with application to parameter estimation problems in machine vision. IEEE Trans. Automat. Contr. 41, 1706–1722 (1996)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gomez-Balderas, J., Castillo, P., Guerrero, J., Lozano, R.: Vision based tracking for a quadrotor using vanishing points. J. Intell. Robot. Syst. 65, 361–371 (2012)CrossRefGoogle Scholar
  12. 12.
    Gomez-Balderas, J., Salazar, S., Guerrero, J., Lozano, R.: Vision based autonomous hover of a mini-rotorcraft. In: Unmanned Aerial Vehicles Symposium, Dubai (2010)Google Scholar
  13. 13.
    Hashimoto, K., Noritsugu, T.: Observer-based control for visual servoing. In: Proc. 13th IFAC World Congress, San Francisco, California, pp. 453–458 (1996)Google Scholar
  14. 14.
    Heintz, F., Rudol, P., Doherty, P.: From images to traffic behavior - a uav tracking and monitoring application. In: 10th International Conference on Information Fusion, 9–12 July 2007Google Scholar
  15. 15.
    Hong, L., Cui, N., Pronobis, M.T., Scott, S.: Simultaneous ground moving target tracking and identification using q wavelets features from hrr data. Inf. Sci. 162, 249–274 (2004)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hwang, I., Roy, K., Balakrishnan, H., Tomlin, C.: A distributed multiple-target identity management algorithm in sensor networks. In: Proceedings of the 43rd IEEE Conference on Decision and Control (2010)Google Scholar
  17. 17.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002)MATHGoogle Scholar
  18. 18.
    Koivo, A.J., Houshangi, N.: Real-time vision feedback for servoing robotic manipulator with self-tuning controller. IEEE Trans. Syst. Man Cybern. 21, 134–142 (1991)CrossRefGoogle Scholar
  19. 19.
    Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, Siam, London (1999)MATHCrossRefGoogle Scholar
  20. 20.
    Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J.K.: Strategies of path-planning for a uav to track a ground vehicle. In: Proceedings of the 2nd annual Autonomous Intelligent Networks and Systems Conference (2003)Google Scholar
  21. 21.
    Liberzon, D.: Switching in Systems and Control. Birkhuser, Boston (2003)MATHGoogle Scholar
  22. 22.
    Martinez, S., Bullo, F.: Optimal sensor placement and motion coordination for target tracking. Automatica 42(4), 661–668 (2006)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Ponda, S.S., Kolacinski, R.M., Frazzoli, E.: Trajectory optimization for target localization using small unmanned aerial vehicles. In: AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, USA, pp. 10–13 (2009)Google Scholar
  24. 24.
    Rafi, F., Khan, S., Shafiq, K., Shah, M.: Autonomous target following by unmanned aerial vehicles. Unmanned systems technology. Conference No. 8 USA 6230(2) (2006)Google Scholar
  25. 25.
    Schmitt, T., Hanek, R., Beetz, M., Buck, S., Radig, B.: Cooperative probabilistic state estimation for vision-based autonomous mobile robots. IEEE Trans. Robot. Autom. 18(5), 670–684 (2002)CrossRefGoogle Scholar
  26. 26.
    Shariat, H., Price, K.: Motion estimation with more than two frames. In: IEEE Transactions on PAMI, vol. 12, pp. 417–434 (1990)Google Scholar
  27. 27.
    Shell, M.: Rabbit semiconductors, dynamics c user manual. Digi International Inc. (2011). http://www.rabbitsemiconductor.com
  28. 28.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall (1990)Google Scholar
  29. 29.
    Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying uav. In: Int. Conference on Intelligent Robots and Systems, IROS, San Francisco, CA, pp. 4929–4934, 25–30 Sept 2011Google Scholar
  30. 30.
    Wise, R., Rysdyk, R.: Uav coordination for autonomous target tracking. In: Proceedings of the AIAA Guidance, Navigation and Control (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. E. Gomez-Balderas
    • 1
  • G. Flores
    • 1
  • L. R. García Carrillo
    • 2
  • R. Lozano
    • 1
  1. 1.Heudiasyc UMR 7253Université de Technologie de CompiegneCompiegneFrance
  2. 2.Department of Electrical and Computer EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations