An Orientation Invariant Visual Homing Algorithm

Article

Abstract

Visual homing is the ability of an agent to return to a goal position by comparing the currently viewed image with an image captured at the goal, known as the snapshot image. In this paper we present additional mathematical justification and experimental results for the visual homing algorithm first presented in Churchill and Vardy (2008). This algorithm, known as Homing in Scale Space, is far less constrained than existing methods in that it can infer the direction of translation without any estimation of the direction of rotation. Thus, it does not require the current and snapshot images to be captured from the same orientation (a limitation of some existing methods). The algorithm is novel in its use of the scale change of SIFT features as an indication of the change in the feature’s distance from the robot. We present results on a variety of image databases and on live robot trials.

Keywords

Visual homing Robot navigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Churchill, D., Vardy, A.: Homing in scale space. In: IEEE/RSJ International Conference on Robots and Systems (IROS), pp. 1307–1312 (2008)Google Scholar
  2. 2.
    Cartwright, B., Collett, T.: Landmark learning in bees. J. Comp. Physiol., A 151, 521–543 (1983)CrossRefGoogle Scholar
  3. 3.
    Cartwright, B., Collett, T.: Landmark maps for honeybees. Biol. Cybern. 57, 85–93 (1987)CrossRefGoogle Scholar
  4. 4.
    Anderson, A.: A model for landmark learning in the honey-bee. J. Comp. Physiol., A 114, 335–355 (1977)CrossRefGoogle Scholar
  5. 5.
    Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: coupling of egocentric and geocentric information. J. Exp. Biol. 199, 129–140 (1996)Google Scholar
  6. 6.
    Graham, P., Durier, V., Collett, T.: The binding and recall of snapshot memories in wood ants (Formica rufa L.). J. Exp. Biol. 207, 393–398 (2003)CrossRefGoogle Scholar
  7. 7.
    Morris, R.: Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981)CrossRefGoogle Scholar
  8. 8.
    Gillner, S., Weiss, A., Mallot, H.: Visual homing in the absecne of feature-based landmark information. Cognition 109, 105–122 (2008)CrossRefGoogle Scholar
  9. 9.
    Collett, T., Collett, M.: Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542–552 (2002)CrossRefGoogle Scholar
  10. 10.
    Kuipers, B., Byun, Y.-T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot. Auton. Syst. 8, 47–63 (1991)CrossRefGoogle Scholar
  11. 11.
    Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. In: IEEE ICRA, pp. 620–625 (1991)Google Scholar
  12. 12.
    Argyros, A., Bekris, C., Orphanoudakis, S., Kavraki, L.: Robot homing by exploiting panoramic vision. Auton. Robots 19(1), 7–25 (2005)CrossRefGoogle Scholar
  13. 13.
    Vardy, A.: Long-range visual homing. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics. IEEE Xplore (2006)Google Scholar
  14. 14.
    Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.: Learning view graphs for robot navigation. Auton. Robots 5, 111–125 (1998)CrossRefGoogle Scholar
  15. 15.
    Hübner, W., Mallot, H.: Metric embedding of view-graphs: a vision and odometry-based approach to cognitive mapping. Auton. Robots 23, 183–196 (2007)CrossRefGoogle Scholar
  16. 16.
    Goedemé, T., Nuttin, M., Tuytelaars, T., Van Gool, L.: Omnidirectional vision based topological navigation. Int. J. Comput. Vis. 74(3), 219–236 (2007)CrossRefGoogle Scholar
  17. 17.
    Filliat, D.: Interactive learning of visual topological navigation. In: IEEE/RSJ International Conference on Robots and Systems (IROS) (2008)Google Scholar
  18. 18.
    Dai, D., Lawton, D.: Range-free qualitative navigation. In: IEEE ICRA (1993)Google Scholar
  19. 19.
    Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.: Where did I take that snapshot? Scene-based homing by image matching. Biol. Cybern. 79, 191–202 (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Möller, R., Vardy, A.: Local visual homing by matched-filter descent in image distances. Biol. Cybern. 95, 413–430 (2006)CrossRefGoogle Scholar
  21. 21.
    Zeil, J., Hofmann, M., Chahl, J.: Catchment areas of panoramic snapshots in outdoor scenes. J. Opt. Soc. Am. A 20(3), 450–469 (2003)CrossRefGoogle Scholar
  22. 22.
    Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connect. Sci. 17(1/2), 47–90 (2005)CrossRefGoogle Scholar
  23. 23.
    Zampoglou, M., Szenher, M., Webb, B.: Adaptation of controllers for image-based homing. Adapt. Behav. 14, 245–252 (2006)CrossRefGoogle Scholar
  24. 24.
    Möller, R.: Local visual homing by warping of two-dimensional images. Robot. Auton. Syst. 57(1), 87–101 (2009)CrossRefGoogle Scholar
  25. 25.
    Möller, R., Krzykawski, M., Gerstmayr, L.: Three 2d-warping schemes for visual robot navigation. Auton. Robots 29(3), 253–291 (2010)CrossRefGoogle Scholar
  26. 26.
    Burke, A., Vardy, A.: Visual compass methods for robot navigation. In: Proceedings of the Newfoundland Conference on Electrical and Computer Engineering (2006)Google Scholar
  27. 27.
    Vardy, A.: A simple visual compass with learned pixel weights. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering. IEEE Xplore (2008)Google Scholar
  28. 28.
    Rizzi, A., Duina, D., Inelli, S., Cassinis, R.: Unsupervised matching of visual landmarks for robotic homing using Fourier-Mellin transform. In: Intelligent Autonomous Systems vol. 6, pp. 455–462 (2000)Google Scholar
  29. 29.
    Vardy, A., Oppacher, F.: Low-level visual homing. In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) Advances in Artificial Life—Proceedings of the 7th European Conference on Artificial Life (ECAL). Lecture Notes in Artificial Intelligence, vol. 2801, pp. 875–884. Springer (2003)Google Scholar
  30. 30.
    Weber, K., Venkatesh, S., Srinivasan, M.: Insect-inspired robotic homing. Adapt. Behav. 7, 65–97 (1999)CrossRefGoogle Scholar
  31. 31.
    Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robot. Auton. Syst., Special Issue: Biomimetic Robots 30, 39–64 (2000)CrossRefGoogle Scholar
  32. 32.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  33. 33.
    Se, S., Lowe, D., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int. J. Rob. Res. 21(8), 735–758 (2001)CrossRefGoogle Scholar
  34. 34.
    Briggs, A., Li, Y., Scharstein, D., Wilder, M.: Robot navigation using 1d panoramic images. In: IEEE ICRA, pp. 2679–2685 (2006)Google Scholar
  35. 35.
    Pons, J.S., Hübner, W., Dahmen, J., Mallot, H.: Vision-based robot homing in dynamic environments. In: Schilling, K. (ed.) 13th IASTED International Conference on Robotics and Applications, pp. 293–298 (2007)Google Scholar
  36. 36.
    Vardy, A.: Using feature scale change for robot localization along a route. In: IEEE/RSJ International Conference on Robots and Systems (IROS) (2010)Google Scholar
  37. 37.
    Röfer, T.: Controlling a wheelchair with image-based homing. In: Proceedings of AISB Workshop on Spatial Reasoning in Mobile Robots and Animals. Manchester, UK (1997)Google Scholar
  38. 38.
    Möller, R., Vardy, A., Kreft, S., Ruwisch, S.: Visual homing in environments with anisotropic landmark distribution. Auton. Robots 23, 231–245 (2007)CrossRefGoogle Scholar
  39. 39.
    Churchill, D.: Homing in scale space. Master’s thesis, Memorial University of Newfoundland (2009)Google Scholar
  40. 40.
    Royston, P.: An extension of shapiro and wilk’s w test for normality to large samples. In: Applied Statistics, pp. 115–124 (1982)Google Scholar
  41. 41.
    Royston, P.: Algorithm as 181: the w test for normality. In: Applied Statistics, pp. 176–180 (1982)Google Scholar
  42. 42.
    Gibbons, J., Chakraborti, S.: Nonparametric Statistical Inference. Marcel Dekker, New York (1992)MATHGoogle Scholar
  43. 43.
    Kitchens, L.: Basic Statistics and Data Analysis. Duxbury (2003)Google Scholar
  44. 44.
    Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks. Holden and Day, San Francisco (1975)MATHGoogle Scholar
  45. 45.
    Franz, M., Mallot, H.: Biomimetic robot navigation. Robot. Auton. Syst., Special Issue: Biomimetic Robots 30, 133–153 (2000)CrossRefGoogle Scholar
  46. 46.
    Ferdaus, S., Vardy, A., Mann, G., Gosine, R.: Comparing global measures of image similarity for use in topological localization of mobile robots. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering. IEEE Xplore (2008)Google Scholar
  47. 47.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Department of Computer ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations