Journal of Intelligent & Robotic Systems

, Volume 69, Issue 1–4, pp 91–107 | Cite as

Design, Modeling and Validation of a T-Tail Unmanned Aerial Vehicle

  • Zhuo Li
  • Nathan Hoffer
  • Brandon Stark
  • YangQuan Chen
Article

Abstract

This paper addresses the design and modeling process of a T-tail unmanned aerial vehicle (UAV). A methodology is presented of how to make tradeoffs among the payload requirements, energy efficiency and aerodynamic stability. A linear decoupled model of longitudinal and lateral dynamics is abstracted from a physical airframe. Instead of subjectively estimating the order, error and time delay for system identification (system ID), equations of motion derived from aerodynamics are employed to provide more precise estimation of the model structure. System ID is carried out with regard to the flight data collected by the autopilot data logger. The resulted model is refined based on the simulation and comparison.

Keywords

Unmanned aerial vehicle Design Modeling Simulation Validation T-tail 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chao, H., Chen, Y.Q.: Cooperative Remote Sensing and Actuation Using Networked Unmanned Vehicles. Wiley (2012)Google Scholar
  2. 2.
    CSOIS website. [Online]. Available: http://www.csois.usu.edu. Accessed 2 Mar 2012
  3. 3.
    AggieAir™ Flying Circus. [Online]. Available: http:aggieair.usu.edu/. Accessed 2 Mar 2012
  4. 4.
    Paparazzi—The Free Autopilot. [Online]. Available: http://paparazzi.enac.fr/wiki. Accessed 2 Mar 2012
  5. 5.
    Luo, Y., Chao, H., Di, L., Chen, Y.Q.: Lateral directional fractional order (PI)α control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. IET Control TheoryAppl. 5(18), 2156–2167 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chao, H., Luo, Y., Di, L., Chen, Y.Q.: Roll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control Eng. Pract. 18, 761–772 (2010)CrossRefGoogle Scholar
  7. 7.
    Di, L., Chao, H., Han, J., Chen, Y.Q.: Cognitive multi-UAV formation flight: principle, low-cost UAV testbed, controller tuning and experiments. In: Proc. of 7th ASME/IEEE Intl. Conf. on Mechatronic and Embedded Systems and Applications (MESA11), Washington, DC (2011)Google Scholar
  8. 8.
    Chao, H., Cao, Y., Chen, Y.Q.: Autopilots for small unmanned aerial vehicles: a survey. Int. J. Control Autom. Syst. 8(1), 36–44 (2010)CrossRefGoogle Scholar
  9. 9.
    AlSwailenm, S.I.: Application of robust control in unmanned vehicle flight control system design. Ph.D. dissertation, College of Aeronautics, Cranfield Univ., UK (2004)Google Scholar
  10. 10.
    Chao, H., Luo, Y., Di, L., Chen, Y.Q.: Fractional order flight control of a small fixed-wing UAV: controller design and simulation study. In: Proc. of IDETC/CIE 2009, pp. 621–628 (2009)Google Scholar
  11. 11.
    Liu, M., Egan, G., Ge, Y.: Identification of attitude flight dynamics for an unconventional UAV. In: Proc. of IEEE Intl. Conf. on Intelligent Robots and Systems, Beijing, pp. 3243–3248 (2006)Google Scholar
  12. 12.
    Wu, H., Sun, D., Zhou, Z.: Model identification of a micro air vehicle in loitering flight based on attitude performance evaluation. IEEE Trans. Robotics 20, 702–712 (2004)CrossRefGoogle Scholar
  13. 13.
    Cai, G., Chen, B.M., Peng, K., Dong, M., Lee, T.H.: Modeling and control of the yaw channel of a UAV helicopter. IEEE Trans. Ind. Electron. 55(9), 3426–3434 (2008)CrossRefGoogle Scholar
  14. 14.
    Santoso, F., Liu, M., Egan, G.: H 2 and H robust autopilot synthesis for longitudinal flight of a special unmanned aerial vehicle: a comparative study. IET Control Theory and Appl. 2(7), 583–594 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Baldi, P., Castaldi, P., Mimmo, N., Torre, A., Simani, S.: A new longitudinal flight path control with adaptive wind shear estimation and compensation. In: Proc. of IEEE CDC, pp. 6852–6857 (2011)Google Scholar
  16. 16.
    NASA Tutorial Webpage. [Online]. Available: http://quest.arc.nasa.gov/aero/virtual/demo/aeronautics/tutorial/motion.html. Accessed 2 Mar 2012
  17. 17.
    Beard, R.W., McLain, T.W.: Small Unmanned Aerial Vehicle. Princeton University Press (2012)Google Scholar
  18. 18.
    Kermode, A.C.: Mechanics of Flight, 11th edn. Prentice Hall, NJ (2006)Google Scholar
  19. 19.
    Ansys Fluent. [Online]. Available: http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/ANSYS+Fluent. Accessed 2 Mar 2012
  20. 20.
    Phillips, W.F.: Mechanics of Flight. Wiley, Hoboken (2004)Google Scholar
  21. 21.
    Phillips, W.F.: DBF2007C.wings. [Online]. Available: http://www.neng.usu.edu/mae/faculty/wphillips/MAE5510.html. Accessed 2 Mar 2012
  22. 22.
    Rugh, W.J.: Linear System Theory, 2nd edn. Prentice Hall, NJ (1996)MATHGoogle Scholar
  23. 23.
    Cook, M.V.: Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control, 2nd edn. Elsevier, Burlington (2007)Google Scholar
  24. 24.
    Etkin, B., Reid, L.D.: Dynamics of Flight—Stability and Control, 3rd edn. Wiley, NJ (1996)Google Scholar
  25. 25.
    Castle Creations—one of the world’s largest manufacturers of electronic speed controls. [Online]. Available: http://www.castlecreations.com. Accessed 2 Mar 2012
  26. 26.
    Ljung, L.: System Identification—Theory For the User, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)Google Scholar
  27. 27.
    FlightGear—a professional open-source flight simulator. [Online]. Available: http://www.flightgear.org/. Accessed 2 Mar 2012

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zhuo Li
    • 1
  • Nathan Hoffer
    • 1
  • Brandon Stark
    • 1
  • YangQuan Chen
    • 1
  1. 1.Center for Self-Organizing and Intelligent Systems, Department of Electrical & Computer EngineeringUtah State UniversityLoganUSA

Personalised recommendations