Journal of Intelligent & Robotic Systems

, Volume 68, Issue 2, pp 165–184

A Novel Trajectory Generation Method for Robot Control

  • KeJun Ning
  • Tomas Kulvicius
  • Minija Tamosiunaite
  • Florentin Wörgötter
Open Access
Article

Abstract

This paper presents a novel trajectory generator based on Dynamic Movement Primitives (DMP). The key ideas from the original DMP formalism are extracted, reformulated and extended from a control theoretical viewpoint. This method can generate smooth trajectories, satisfy position- and velocity boundary conditions at start- and endpoint with high precision, and follow accurately geometrical paths as desired. Paths can be complex and processed as a whole, and smooth transitions can be generated automatically. Performance is analyzed for several cases and a comparison with a spline-based trajectory generation method is provided. Results are comparable and, thus, this novel trajectory generating technology appears to be a viable alternative to the existing solutions not only for service robotics but possibly also in industry.

Keywords

Trajectory generation Dynamic trajectory joining Control theory Machine learning 

References

  1. 1.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer (2009)Google Scholar
  2. 2.
    Nystrom, M., Norrlof, M.: Path generation for industrial robots. Technical Report LiTH-ISY-R-2529, Department of Electrical Engineering, Linkoping University (2003)Google Scholar
  3. 3.
    Atkeson, C.G., Hale, J.G., Pollick, F., Riley, M., Kotosaka, S., Schaal, S., Shibata, T., Tevatia, G., Ude, A., Vijayakumar, S., Kawato, E., Kawato, M.: Using humanoid robots to study human behavior. IEEE Intell. Syst. 15(4), 46–56 (2000)CrossRefGoogle Scholar
  4. 4.
    Castain, R.H., Paul, R.P.: An on-line dynamic trajectory generator. Int. J. Rob. Res. 3(1), 68–72 (1984)CrossRefGoogle Scholar
  5. 5.
    Tondu, B., Bazaz, S.A.: The three-cubic method: an optimal online robot joint trajectory generator under velocity, acceleration, and wandering constraints. Int. J. Rob. Res. 18(2), 893–901 (1999)CrossRefGoogle Scholar
  6. 6.
    Thompson, S.E., Patel, R.V.: Formulation of joint trajectories for industrial robots using B-splines. IEEE Trans. Ind. Electron. IE-34(2), 192–199 (1987)CrossRefGoogle Scholar
  7. 7.
    Chand, S., Doty, K.L.: On-line polynomial trajectories for robot manipulators. Int. J. Rob. Res. 4(2), 38–48 (1985)CrossRefGoogle Scholar
  8. 8.
    Taylor, R.H.: Straight line manipulator trajectories. IBM J. Res. Dev. 23(4), 424–436 (1979)CrossRefGoogle Scholar
  9. 9.
    Wada, Y., Kawato, M.: A theory for cursive handwriting based on the minimization principle. Biol. Cybern. 73(1), 3–13 (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learning movement primitives. In: Proceedings of International Symposium of Robotics Research, pp. 561–572 (2003)Google Scholar
  11. 11.
    Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1398–1403 (2002)Google Scholar
  12. 12.
    Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients. Neural Netw. 21, 682–697 (2008)CrossRefGoogle Scholar
  13. 13.
    Schaal, S., Mohajerian, P., Ijspeert, A.J.: Dynamics systems vs. optimal control - a unifying view. Prog. Brain Res. 165(1), 425–445 (2007)CrossRefGoogle Scholar
  14. 14.
    Vijaykumar, S., Schaal, S.: Locally weighted projection regression: an O(n) algorithm for incremental real time learning in high dimensional space. In: Proceedings of the International Conference on Machine Learning, pp. 1079–1086 (2000)Google Scholar
  15. 15.
    Ijspeert, A., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Adv. Neural Inform. Process Syst., vol. 15, pp. 1547–1554 (2003)Google Scholar
  16. 16.
    Park, D.H., Hoffmann, H., Pastor, P., Schaal, S.: Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp. 91–98 (2008)Google Scholar
  17. 17.
    Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.: Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2587–2592 (2009)Google Scholar
  18. 18.
    Gams, A., Ude, A.: Generalization of example movements with dynamic systems. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp. 28–33 (2009)Google Scholar
  19. 19.
    Pongas, D., Billard, A., Schaal, S.: Rapid synchronization and accurate phase-locking of rhythmic motor primitives. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2911–2916 (2005)Google Scholar
  20. 20.
    Kober, J., Peters, J.: Learning new basic movements for robotics. In: Proceedings of the Autonome Mobile Systeme, pp. 105–112 (2009)Google Scholar
  21. 21.
    Kober, J., Mulling, K., Kromer, O., Lampert, C.H., Scholkopf, B., Peters, J.: Movement Templates for Learning of Hitting and Batting. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 853–858 (2010)Google Scholar
  22. 22.
    Kulvicius, T., Ning, K., Tamosiunaite, M., Wörgötter, F.: Joining movement sequences: modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Trans. Robot. 28(1), 145–157 (2012)CrossRefGoogle Scholar
  23. 23.
    Dorf, R.C., Bishop, R.H.: Modern Control Systems, 8th edn. Addison-Wesley (1998)Google Scholar
  24. 24.
    Pastor, P., Hoffmann, H., Asfour, T. Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 763–768 (2009)Google Scholar
  25. 25.
    Nemec, B., Tamosiunaite, M., Wörgötter, F., Ude, A.: Task adaptation through exploration and action sequencing. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp. 610–616 (2009)Google Scholar
  26. 26.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall (1999)Google Scholar
  27. 27.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Dynamics and Control, 2nd edn. John Wiley & Sons (2004)Google Scholar
  28. 28.
    Corke, P.I.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3, 24–32 (1996)CrossRefGoogle Scholar
  29. 29.
    Kyriakopoulos, K.J., Saridis, G.N.: Minimum jerk path generation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 364–369 (1988)Google Scholar
  30. 30.
    Tarn, T.J., Xi, N., Bejczy, A.K.: Motion planning in phase space for intelligent robot arm control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1507–1514 (1992)Google Scholar
  31. 31.
    Piazzi, A., Visioli, A.: Global-minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47(1), 140–149 (2000)CrossRefGoogle Scholar
  32. 32.
    Piazzi, A., Visioli, A.: An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1924–1927 (1997)Google Scholar
  33. 33.
    Nguyen, K.D., Ng, T.C., Chen, I.M.: On algorithms for planning S-curve motion profiles. Int. J. Adv. Robot. Syst. 5(1), 99–106 (2008)Google Scholar
  34. 34.
    Constantinescu, D., Croft, E.A.: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J. Robot. Syst. 17(5), 223–249 (2000)CrossRefGoogle Scholar
  35. 35.
    Shin, K.G., McKay, N.D.: Minimum-time control of robot manipulators with geometric path constraints. IEEE Trans. Automat. Contr. 30(6), 531–541 (1985)MATHCrossRefGoogle Scholar
  36. 36.
    Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-optimal control of robotic manipulators along specified paths. Int. J. Rob. Res. 4(1), 3–17 (1985)CrossRefGoogle Scholar
  37. 37.
    Aksoy, E.E., Abramov, A., Dellen, B., Dörr, J., Ning, K., Wörgötter, F.: Unsupervised recognition and classification of manipulations: grouping actions and objects. Int. J. Rob. Res. 30(10), 1229–1249 (2011)CrossRefGoogle Scholar
  38. 38.
    Ning, K., Kulvicius, T., Tamosiunaite, M., Wörgötter, F.: Accurate position and velocity control for trajectories based on dynamic movement primitives. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5006–5011 (2011)Google Scholar
  39. 39.
    Marquez, H.J., Damaren, C.J.: On the design of strictly positive real transfer functions. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 42(4), 214–218 (1995)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Ioannou, P., Gang, T.: Frequency domain conditions for strictly positive real functions. IEEE Trans. Automat. Contr. 32(1), 53–54 (1987)MATHCrossRefGoogle Scholar
  41. 41.
    Huang, C.-H., Ioannou, P.A., Maroulas, J., Safonov, M.G.: Design of strictly positive real systems using constant output feedback. IEEE Trans. Automat. Contr. 44(3), 569–573 (1999)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Sane, H.S., Bernstein, D.S.: Asymptotic disturbance rejection for hammerstein positive real systems. IEEE Trans. Control Syst. Technol. 11(3), 364–374 (2003)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • KeJun Ning
    • 1
    • 2
  • Tomas Kulvicius
    • 1
  • Minija Tamosiunaite
    • 1
  • Florentin Wörgötter
    • 1
  1. 1.Bernstein Center for Computational Neuroscience, Inst. of Physics IIIUniversity of GöttingenGöttingenGermany
  2. 2.Research & Technology, LenovoBeijingChina

Personalised recommendations