Journal of Intelligent & Robotic Systems

, Volume 68, Issue 3–4, pp 323–338 | Cite as

A Quadrotor Test Bench for Six Degree of Freedom Flight

  • Yushu Yu
  • Xilun DingEmail author


In this paper, a quadrotor test bench that can test and verify the 6 DOF flight controller is presented. The development of controller for aerial vehicle is usually a long and dangerous procedure. It needs series of tests from simulation to real flight. However, there are differences between simulation and real time flight due to the limit of the current simulation technique. The quadrotor test bench presented in the paper aims to fill the gap between simulation and real time flight. The test bench contains a quadrotor attached on the base through a sphere joint which let the quadrotor be able to rotate around 3 axes. A 6 axes force/torque sensor is used to simulate the position of the aerial vehicle. The paper presents the detailed system design and implementation of the test bench. Furthermore, the modeling and the parameter identification of the quadrotor on the test bench are described. A 6 DOF controller that consists of both guidance controller and attitude controller is designed using a nonlinear control technique named trajectory linearization control (TLC). Finally, the flight tests on the quadrotor test bench are demonstrated. The results indicate the feasibility and the value of the test bench.


Quadrotor Test bench Hardware and software system Parameter identification Trajectory linearization control Flight test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AscendingTechnologies Gmbh: Products 2012. (2012)
  2. 2.
    Draganfly Innovations Inc: Draganflyer X4. (2012)
  3. 3.
  4. 4.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Design and experimental verification of a constrained finite time optimal control scheme for the attitude control of a quadrotor helicopter subject to wind gusts. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1636–1641. Anchorage, Alaska, USA (2010)Google Scholar
  5. 5.
    Altuǧ, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)CrossRefGoogle Scholar
  6. 6.
    Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009)CrossRefGoogle Scholar
  7. 7.
    Cabecinhas, D., Naldi, R., Marconi, L., Silvestre, C., Cunha, R.: Robust take-off and landing for a quadrotor vehicle. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1630–1635. Anchorage, Alaska, USA (2010)Google Scholar
  8. 8.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1), 127–151 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Contr. Theory Appl. 3(3), 303–314 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ding, X., Yu, Y.: Motion planning and stabilization control of a multi-propeller multifunction aerial robot. IEEE/ASME Trans. Mechatronics (2012). doi: 10.1109/TMECH.2011.2182202 Google Scholar
  12. 12.
    Ding, X., Yu, Y., Zhu, J.J.: Trajectory linearization tracking control for dynamics of a multi-propeller and multifunction aerial robot—MMAR. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 757–762. Shanghai, China (2011)Google Scholar
  13. 13.
    Gillula, J.H., Huang, H., Vitus, M.P., Tomlin, C.J.: Design of guaranteed safe maneuvers using reachable sets: autonomous quadrotor aerobatics in theory and practice. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1649–1654. Anchorage, Alaska, USA (2010)Google Scholar
  14. 14.
    Hanford, S.D., Long, L.N., Horn, J.F.: A small semi-autonomous rotary-wing unmanned air vehicle (UAV). In: Proc. AIAA Infotech@Aerospace Conf. Washington DC, USA (2005)Google Scholar
  15. 15.
    Hehn, M., DAndrea, R.: A flying inverted pendulum. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 763–770. Shanghai, China (2011)Google Scholar
  16. 16.
    Herisse, B., Hamel, T., Mahony, R., Russotto, F.X.: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot. 28(1), 77–89 (2012)CrossRefGoogle Scholar
  17. 17.
    Herisse, B., Russotto, F.X., Hamel, T., Mahony, R.: Hovering flight and vertical landing control of a VTOL unmanned aerial vehicle using optical flow. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 801–806. Nice, France (2008)Google Scholar
  18. 18.
    Hoffmann, F., Goddemeier, N., Bertram, T.: Attitude estimation and control of a quadrocopter. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1072–1077. Taipei, Taiwan (2010)Google Scholar
  19. 19.
    Hoffmann, G.M., Huang, H., Waslande, S.L., Tomlin, C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: Proc. AIAA Guid., Navigat. Control Conf. Exhibit. Hilton Head, South Carolina (2007)Google Scholar
  20. 20.
    Huang, H., Hoffmann, G.M., Waslander, S.L., Tomlin, C.J.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3277–3282. Kobe, Japan (2009)Google Scholar
  21. 21.
    Huang, R., Liu, Y., Zhu, J.J.: Guidance, navigation, and control system design for tripropeller vertical-takeoff-and-landing unmanned air vehicle. AIAA J. Aircr. 46(6), 1837–1856 (2009)CrossRefGoogle Scholar
  22. 22.
    Lee, D., Kim, H.J., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7(3), 419–428 (2009)CrossRefGoogle Scholar
  23. 23.
    Liu, Y., Zhu, J.J.: Regular perturbation analysis for trajectory linearization control. In: Proc. Amer. Control Conf., pp. 3053–3058. New York, USA (2007)Google Scholar
  24. 24.
    Liu, Y., Zhu, J.J.: Singular perturbation analysis for trajectory linearization control. In: Proc. Amer. Control Conf., pp. 3047–3052. New York, USA (2007)Google Scholar
  25. 25.
    Liu, Y., Zhu, J.J., II, R.L., Wu, J.: Omni-directional mobile robot controller based on trajectory linearization. Robot. Auton. Syst. 56(5), 461–479 (2008)CrossRefGoogle Scholar
  26. 26.
    Lupashin, S., Schollig, A., Sherback, M., DAndrea, R.: A simple learning strategy for high-speed quadrocopter multi-flips. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1642–1648. Anchorage, Alaska, USA (2010)Google Scholar
  27. 27.
    Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2520–2525. Shanghai, China (2011)Google Scholar
  28. 28.
    Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2668–2673. San Francisco, CA, USA (2011)Google Scholar
  29. 29.
    Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)CrossRefGoogle Scholar
  30. 30.
    Mellinger, D., Michael, N., Shomin, M., Kumar, V.: Recent advances in quadrotor capabilities. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2964–2965. Shanghai, China (2011)Google Scholar
  31. 31.
    Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: Intl. Sym. on Distributed Auton. Syst. Lausanne, Switzerland (2010)Google Scholar
  32. 32.
    Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)CrossRefGoogle Scholar
  33. 33.
    Michael, N., Kumar, V.: Control of ensembles of aerial robots. Proc. IEEE 99(9), 1587–1620 (2011)CrossRefGoogle Scholar
  34. 34.
    Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-UAV test bed. IEEE Robot. Autom. Magazine 17(3), 56–65 (2010)CrossRefGoogle Scholar
  35. 35.
    Michini, B., Redding, J., Ure, N.K., Cutler, M., How, J.P.: Design and flight testing of an autonomous variable-pitch quadrotor. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2978–2979. Shanghai, China (2011)Google Scholar
  36. 36.
    Micklet, M.C., Huang, R., Zhu, J.J.: Unstable, nonminimum phase, nonlinear tracking by trajectory linearization control. In: Proc. IEEE Conf. Control Appl., pp. 812–818. Taipei, Taiwan (2004)Google Scholar
  37. 37.
    Mokhtari, A., M’sirdi, N.K., Meghriche, K., Belaidi, A.: Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle. Adv. Robot. 20(1), 71–91 (2006)CrossRefGoogle Scholar
  38. 38.
    Muller, M., Lupashin, S., DAndrea, R.: Quadrocopter ball juggling. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 25–30. San Francisco, CA, USA (2011)Google Scholar
  39. 39.
    Pounds, P., Mahony, R., Corke, P.: Modelling and control of a large quadrotor robot. Control Eng. Practice 18(7), 691–699 (2010)CrossRefGoogle Scholar
  40. 40.
    Pounds, P., Mahony, R., Hynes, P., Roberts, J.: Design of a four-rotor aerial robot. In: Proc. Australas. Conf. Robot. Autom., pp. 145–150. Auckland, New Zealand (2002)Google Scholar
  41. 41.
    Romero, H., Salazar, S., Lozano, R.: Real-time stabilization of an eight-rotor UAV using optical flow. IEEE Trans. Robot. 25(4), 809–817 (2009)CrossRefGoogle Scholar
  42. 42.
    Salazar-Cruz, S., Lozano, R., Escareno, J.: Stabilization and nonlinear control for a novel trirotor mini-aircraft. Control Eng. Practice 17(8), 886–894 (2009)CrossRefGoogle Scholar
  43. 43.
    Samir, B.: Design and control of quadrotors with application to autonomous flying. Ph.D. thesis, SwissFederal Institute of Technology, Lausanne (2007)Google Scholar
  44. 44.
    Schollig, A., Augugliaro, F., Lupashin, S., DAndrea, R.: Synchronizing the motion of a quadrocopter to music. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3355–3360. Anchorage, Alaska, USA (2010)Google Scholar
  45. 45.
    Selig, J.M.: Geometrical Methods in Robotics. Springer-Verlag (1996)Google Scholar
  46. 46.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  47. 47.
    Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive formation flight with quadrotors. In: Intl. Sym. of Robot. Research. Flagstaff, AZ (2011)Google Scholar
  48. 48.
    Vitzilaios, N.I., Tsourveloudis, N.C.: An experimental test bed for small unmanned helicopters. J. Intell. Robot. Syst. 54(5), 769–794 (2000)CrossRefGoogle Scholar
  49. 49.
    Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature UAV on a moving carrier vehicle. J. Intell. Robot. Syst. 61(1–4), 221–238 (2011)CrossRefGoogle Scholar
  50. 50.
    Wu, X., Liu, Y., Zhu, J.J.: Design and real time testing of a trajectory linearization flight controller for the quanser UFO. In: Proc. Amer. Control Conf., pp. 3913–3918. Athens, OH, USA (2003)Google Scholar
  51. 51.
    Zhu, J.J.: PD-spectral theory for multivariable linear time-varying systems. In: Proc. IEEE Conf. Decis. Control, pp. 3908–3913. San Diego, California USA (1997)Google Scholar
  52. 52.
    Zhu, J.J., Huizenga, A.B.: A type two trajectory linearization controller for a reusable launch vehicle—a singular perturbation approach. In: AIAA Atmos. Flight Mech. Conf. Exhibit, pp. 1121–1137. Providence, Rhode Island (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Robotics Institute, School of Mechanical Engineering and AutomationBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations