Advertisement

Journal of Intelligent & Robotic Systems

, Volume 68, Issue 3–4, pp 275–291 | Cite as

Upper-Limb EMG-Based Robot Motion Governing Using Empirical Mode Decomposition and Adaptive Neural Fuzzy Inference System

  • Hsiu-Jen Liu
  • Kuu-Young YoungEmail author
Article

Abstract

To improve the quality of life for the disabled and elderly, this paper develops an upper-limb, EMG-based robot control system to provide natural, intuitive manipulation for robot arm motions. Considering the non-stationary and nonlinear characteristics of the Electromyography (EMG) signals, especially when multi-DOF movements are involved, an empirical mode decomposition method is introduced to break down the EMG signals into a set of intrinsic mode functions, each of which represents different physical characteristics of muscular movement. We then integrate this new system with an initial point detection method previously proposed to establish the mapping between the EMG signals and corresponding robot arm movements in real-time. Meanwhile, as the selection of critical values in the initial point detection method is user-dependent, we employ the adaptive neuro-fuzzy inference system to find proper parameters that are better suited for individual users. Experiments are performed to demonstrate the effectiveness of the proposed upper-limb EMG-based robot control system.

Keywords

Electromyography (EMG) Human-assisting robot Upper-limb motion classification Empirical mode decomposition (EMD) Adaptive neuro-fuzzy inference system (ANFIS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kermani, M.Z., Wheeler, B.C., Badie, K., Hashemi, R.M.: EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. 3(4), 324–333 (1995)CrossRefGoogle Scholar
  2. 2.
    Huang, H.P., Chen, C.Y.: Development of a myoelectric discrimination system for a multi-degree prosthetic hand. In: IEEE International Conference on Robotics and Automation (1999)Google Scholar
  3. 3.
    Chen, L., Yang, P., Zu, L., Guo, X.: Movement recognition by electromyography signal for transfemoral prosthesis control. In: IEEE Conference on Industrial Electronics and Applications (2009)Google Scholar
  4. 4.
    Harada, A., Nakakuki, T., Hikita, M., Ishii, C.: Robot finger design for myoelectric hand and recognition of finger motions via surface EMG. In: IEEE Conference on Automation and Logistics (2010)Google Scholar
  5. 5.
    Fukuda, O., Tsuji, T., Kaneko, M., Otsuka, A.: A human-assisting manipulator teleoperated by EMG signals and arm motions. EEE Trans. Robot. Autom. 19(2), 210–222 (2003)CrossRefGoogle Scholar
  6. 6.
    Artemiadis, P.K., Kyriakopoulos, K.J.: EMG-based position and force control of a robot arm: application to teleoperation and orthosis. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2007)Google Scholar
  7. 7.
    Ferreira, A., Celeste, W.C., Cheein, F.A., Bastos-Filho, T.F., Sarcinelli-Filho, M., Carelli, R.: Human-machine interfaces based on EMG and EEG applied to robotic systems. J. Neuroeng. Rehabil. 5(10), 1–15 (2008)Google Scholar
  8. 8.
    Gopura, R.A.R.C., Kiguchi, K.: EMG-based control of an exoskeleton robot for human forearm and wrist motion assist. In: IEEE International Conference on Robotics and Automation (2008)Google Scholar
  9. 9.
    Bu, N., Okamoto, M., Tsuji, T.: A hybrid motion classification approach for EMG-based human–robot interfaces using Bayesian and neural networks. EEE Trans. Robot. 25(3), 502–511 (2009)CrossRefGoogle Scholar
  10. 10.
    Liu, H.J., Young, K.Y.: An adaptive upper-arm EMG-based robot control system. Int. J. Fuzzy Syst. 12(3), 181–189 (2010)MathSciNetGoogle Scholar
  11. 11.
    Li, Y., Tian, Y., Chen, W.: Multi-pattern recognition of sEMG based on improved BP neural network algorithm. In: Chinese Control Conference (2010)Google Scholar
  12. 12.
    Phinyomark, A., Hirunviriya, S., Limsakul, C., Phukpattaranont, P.: Evaluation of EMG feature extraction for hand movement recognition based on Euclidean distance and standard deviation. In: International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (2010)Google Scholar
  13. 13.
    Meng, M., She, Q., Gao, Y., Luo, Z.: EMG signals based gait phases recognition using hidden Markov models. In: IEEE International Conference on Information and Automation (2010)Google Scholar
  14. 14.
    Gora, J., Szecowka, P.M., Wolczowski, A.R.: Control of dexterous hand—algorithm implementation issues. In: International Conference on Information Technology and Applications in Biomedicine (2009)Google Scholar
  15. 15.
    Karlsson, S., Yu, J., Akay, M.: Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods. IEEE Trans. Biomed. Eng. 46, 670–684 (1999)CrossRefGoogle Scholar
  16. 16.
    Mahaphonchaikul, K., Sueaseenak, D., Pintavirooj, C., Sangworasil, M., Tungjitkusolmun, S.: EMG signal feature extraction based on wavelet transform. In: International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (2010)Google Scholar
  17. 17.
    Zong, C., Chetouani, M.: Hilbert–Huang transform based physiological signals analysis for emotion recognition. In: IEEE International Symposium on Signal Processing and Information Technology (2009)Google Scholar
  18. 18.
    Xie, H., Wang, Z.: Mean frequency derived via Hilbert–Huang transform with application to fatigue EMG signal analysis. Comput. Methods Programs Biomed. 82, 114–120 (2006)CrossRefGoogle Scholar
  19. 19.
    Andrade, A.O., Nasuto, S., Kyberd, P., Sweeney-Reed, C.M., Van Kanijn, F.R.: EMG signal filtering based on empirical mode decomposition. Biomed. Signal Process Contr. 1, 44–45 (2006)CrossRefGoogle Scholar
  20. 20.
    Ma, W., Luo, Z.: Hand-motion pattern recognition of sEMG based on Hilbert–Huang transformation and AR-model. In: IEEE International Conference on Mechatronics and Automation (2007)Google Scholar
  21. 21.
    Peng, B., Jin, X., Min, Y., Su, X.: The study on the sEMG signal characteristics of muscular fatigue based on the Hilbert–Huang transform. In: International Conference on Computational Science (2006)Google Scholar
  22. 22.
    Wang, N., Ambikairajah, E., Celler, B.G., Lovell, N.H.: Accelerometry based classification of gait patterns using empirical mode decomposition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2008)Google Scholar
  23. 23.
    Chen, L., Yang, P., Zu, L., Guo, X.: Movement recognition by electromyography signal for transfemoral prosthesis control. In: IEEE Conference on Industrial Electronics and Applications (2009)Google Scholar
  24. 24.
    Liu, H.J., Young, K.Y.: Robot motion governing using upper limb EMG signal based on empirical mode decomposition. In: IEEE International Conference on Systems, Man, and Cybernetics (2010)Google Scholar
  25. 25.
    Jang, J.S.R.: ANFIS: adaptive network based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–683 (1993)CrossRefGoogle Scholar
  26. 26.
    Chan, Francis H.Y., Yang, Y.S., Lam, F.K., Zhang, Y.T., Parker, P.A.: Fuzzy EMG classification for prosthesis control. In: IEEE Trans. Rehabil. Eng. 8(3), 305–311 (2000)Google Scholar
  27. 27.
    Vachkov, G., Fukuda, T.: Structured learning and decomposition of fuzzy models for robotic control applications. J. Intell. Robot. Syst. 32(1), 1–21 (2001)zbMATHCrossRefGoogle Scholar
  28. 28.
    Luca, C.J.D.: The use of surface electromyography in biomechanics. J. Appl. Biomech. 13(2), 135–163 (1997)Google Scholar
  29. 29.
    Henryk, K., Grzegorz, S., Anton, N.: Effect of electrode position on EMG recording in pectoralis major. J. Hum. Kinet. 17, 105–112 (2007)Google Scholar
  30. 30.
    Huang, N.E., Zhen, S., Long, S.R., Wu, M.C., Shin, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454(A), 903–995 (1998)zbMATHGoogle Scholar
  31. 31.
    Li, X., Li, D., Liang, Z., Voss, Z.J., Sleigh, J.W.: Analysis of depth of anesthesia with Hilbert–Huang spectral entropy. Clin. Neurophysiol. 119(11), 2465–2475 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.National Space OrganizationHsinchuTaiwan

Personalised recommendations