Journal of Intelligent & Robotic Systems

, Volume 68, Issue 1, pp 69–85 | Cite as

Terrain Avoidance Nonlinear Model Predictive Control for Autonomous Rotorcraft

  • Bruno J. N. Guerreiro
  • Carlos Silvestre
  • Rita Cunha


This paper describes a terrain avoidance control methodology for autonomous rotorcraft applied to low altitude flight. A simple nonlinear model predictive control (NMPC) formulation is used to adequately address the terrain avoidance problem, which involves stabilizing a nonlinear and highly coupled dynamic model of a helicopter, while avoiding collisions with the terrain as well as preventing input and state saturations. The physical input saturations are made intrinsic to the model, such that the control is always admissible and the MPC design is simplified. A comparison of several optimization approaches is provided, where the performance of the traditional gradient method with fixed step is compared with the quasi-Newton method and a line search algorithm. The simulation results show that the adopted strategy achieves good performance even when the desired path is on collision course with the terrain.


Helicopter control Obstacle avoidance Model-based control Predictive control Nonlinear models 

Mathematics Subject Classification (2010)

49J15 49N90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bemporad, A., Morari, M., Pistikopoulos, E.N., Dua, V.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, C.C., Shaw, L.: On receding horizon feedback control. Automatica 18(3), 349–352 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control with guaranteed stability. Automatica 34(10), 1205–1217 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cunha, R.: Modeling and Control of an Autonomous Robotic Helicopter. Master’s thesis, Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisbon, Portugal (2002)Google Scholar
  6. 6.
    Cunha, R., Guerreiro, B., Silvestre, C.: Vario-xtreme Helicopter Nonlinear Model: Complete and Simplified Expressions. Technical report, Instituto Superior Técnico, Institute for Systems and Robotics (2005)Google Scholar
  7. 7.
    Cutler, C.R., Ramaker, B.L.: Dynamic matrix control: a computer control algorithm. In: Proceedings of the Joint Automatic Control Conference. San Francisco, CA (1980)Google Scholar
  8. 8.
    de Nicolao, G., Magnani, L., Magni, L., Scattolini, R.: A stabilizing receding horizon controller for nonlinear discrete time systems. In: American Control Conference. Chicago, Illinois (2000)Google Scholar
  9. 9.
    Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.A.: State and output feedback nonlinear model predictive control: an overview. Europ. J. Contr. 9, 179–195 (2003)Google Scholar
  10. 10.
    Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice—a survey. Automatica 25(3), 335–348 (1989)CrossRefzbMATHGoogle Scholar
  11. 11.
    Garcia, C.E., Morari, M.: Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process Des. Dev. 21(2), 308–323 (1982)CrossRefGoogle Scholar
  12. 12.
    Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous uav guidance. J. Intell. Robot. Syst. 57, 65–100 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit stochastic predictive control of combustion plants based on gaussian process models. Automatica 44, 1621–1631 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guerreiro, B., Silvestre, C., Cunha, R.: Terrain avoidance model predictive control for autonomous rotorcraft. In: Proceedings of the 17th IFAC World Congress (IFAC’08), pp. 1076–1081. Seoul, Korea (2008)Google Scholar
  15. 15.
    Jadbabaie, A., Yu, J., Hauser, J.: Unconstrained receding-horizon control of nonlinear systems. IEEE Trans. Automat. Contr. 46(5), 776–783 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57(2), 265–293 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Keviczky, T., Balas, G.J.: Receding horizon control of an f-16 aircraft: a comparative study. Control Eng. Pract. 14(9), 1023–1033 (2006)CrossRefGoogle Scholar
  18. 18.
    Kim, H., Shim, D., Sastry, S.: Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. In: American Control Conference, vol. 5, pp. 3576–3581. Anchorage, AK (2002)Google Scholar
  19. 19.
    Lapp, T., Singh, L.: Model predictive control based trajectory optimization for nap-of-earth flight including obstacle avoidance. In: American Control Conference, pp. 891–892. Boston, MA (2004)Google Scholar
  20. 20.
    Magni, L.: On robust tracking with non-linear model predictive control. Int. J. Control 75(6), 399–407 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Magni, L., Raimondo, D.M., Allgöwer, F. (eds.): Nonlinear Model Predictive Control: Towards New Challenging Applications. Lecture Notes in Control and Information Sciences, vol. 384. Springer, New York (2009)zbMATHGoogle Scholar
  22. 22.
    Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: stability and optimality. Automatica 36, 790–814 (2000). Survey PaperMathSciNetCrossRefGoogle Scholar
  23. 23.
    Mehra, M., Rouhani, R., Eterno, J., Richalet, J., Rault, A.: Model algorithmic control: review and recent development. In: Proceedings of the Eng. Foundation Conf. on Chemical Process Control II, pp. 287–310. Sea Island, Georgia (1982)Google Scholar
  24. 24.
    Mettler, B., Goerzen, C., Kong, Z., Whalley, M.: Benchmarking of obstacle field navigation algorithms for autonomous helicopters. In: Proceedings of the American Helicopter Society 66th Annual Forum. Phoenix, AZ (2010)Google Scholar
  25. 25.
    Michalska, H., Mayne, D.Q.: Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automat. Contr. 38(11), 1623–1633 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operation Reasearch. Springer, New York (1999)Google Scholar
  27. 27.
    Gareth, D., Padfield.: Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling. AIAA Education Series. AIAA, Washington DC (1996)Google Scholar
  28. 28.
    Paulino, N., Silvestre, C., Cunha, R.: Affine parameter-dependent preview control for rotorcraft terrain following. AIAA J. Guid. Contr. Dynam. 29(6), 1350–1359 (2006)CrossRefGoogle Scholar
  29. 29.
    Propoi, A.I.: Use of linear programming methods for synthesizing sample-data automatic systems. Autom. Remote Control 24, 837 (1963)MathSciNetGoogle Scholar
  30. 30.
    Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Int. 11, 733–764 (2003)Google Scholar
  31. 31.
    Rawlings, J.B., Muske, K.R.: The stability of constrained receding horizon control. IEEE Trans. Automat. Contr. 38(10), 1512–1516 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Richalet, J., Rault, A., Testud, J.L., Papon, J.: Model predictive heuristic control: applications to industrial processes. Automatica 14, 413–428 (1978)CrossRefGoogle Scholar
  33. 33.
    Shim, D., Kim, H., Sastry, S.: Decentralized reflective model predictive control of multiple flying robots in dynamic environment. In: Conference on Decision and Control, USA (2003)Google Scholar
  34. 34.
    Sutton, G., Bitmead, R.: Computational implementation of nonlinear model predictive control to nonlinear submarine. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear Model Predictive Control, Progress in Systems and Control Theory, pp. 461–471. Birkhäuser, Basel-Boston-Berlin (2000)CrossRefGoogle Scholar
  35. 35.
    Yoon, Y., Shin, J., Kim, H., Park, Y., Sastry, S.: Model-predictive active steering and obstacle avoidance for autonomous ground vehicles. Control Eng. Pract. 17, 741–750 (2009)CrossRefGoogle Scholar
  36. 36.
    Zadeh, L.A., Whalen, B.H.: On optimal control and linear programming. IRE Trans. Automat. Contr. 7(4), 45–46 (1962)CrossRefGoogle Scholar
  37. 37.
    Zavala, V.M., Biegler, L.T.: The advanced-step nmpc controller: optimality, stability, and robustness. Automatica 45(1), 83–93 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Bruno J. N. Guerreiro
    • 1
  • Carlos Silvestre
    • 1
    • 2
  • Rita Cunha
    • 1
  1. 1.Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST)LisbonPortugal
  2. 2.Faculty of Science and TechnologyUniversity of MacauTaipaMacau

Personalised recommendations