Advertisement

Journal of Intelligent & Robotic Systems

, Volume 67, Issue 3–4, pp 255–270 | Cite as

Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm

  • Weihai Chen
  • Guanjiao RenEmail author
  • Jianbin Zhang
  • Jianhua Wang
Article

Abstract

This paper focuses on the topic of smooth gait transition of a hexapod robot by a proposed central pattern generator (CPG) algorithm. Through analyzing the movement characteristics of the real insects, it is easy to generate kinds of gait patterns and achieve their smooth transition if we employ a series of oscillations with adjustable phase lag. Based on this concept, a CPG model is proposed, which is constructed by an isochronous oscillators and several first-order low-pass filters. As an application, a hexapod robot and its locomotion control are introduced by converting the CPG signal to robot’s joint space. Simulation and real world experiment are completed to demonstrate the validity of the proposed CPG model. Through measuring the position of the body center and the distance between footpoints and ground, the smooth gait transition can be achieved so that the effectiveness of the proposed method is verified.

Keywords

CPG Multi-legged robot Gait Smooth transition Phase lag 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10846_2012_9661_MOESM1_ESM.mpg (5.1 mb)
(MPG 5.07 MB)
10846_2012_9661_MOESM2_ESM.mpg (3.7 mb)
(MPG 3.67 MB)

References

  1. 1.
    Quinn, R.D., Ritzmann, R.E.: Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connect. Sci. 10(3,4), 239–254 (1998)CrossRefGoogle Scholar
  2. 2.
    Go, Y., Yin, X., Bowling, A.: Navigability of multi-legged robots. IEEE/ASME Trans. Mechatron. 11(1), 1–8 (2006)CrossRefGoogle Scholar
  3. 3.
    Moore, E.Z., Campbell, D., Grimminger, F., Buehler, M.: Reliable stair climbing in the simple hexapod ‘RHex’. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 2222–2227 (2002)Google Scholar
  4. 4.
    Duan, X.J., Chen, W.H., Yu, S.Q., Liu, J.M.: Tripod gaits planning and kinematics analysis of a hexapod robot. In: Proceedings of IEEE International Conference on Control and Automation (ICCA), pp. 1850–1855 (2009)Google Scholar
  5. 5.
    Ren, G.J., Chen, W.H., Chen, B., Wang, J.H.: Antenna sensor based on PSD and application mobile robot. J. Beihang Univ. (in Chinese) 36(5), 601–605 (2010)Google Scholar
  6. 6.
    Ren, G.J., Chen, W.H., Chen, B., Wang, J.H.: Mechanism design and analysis of cockroach robot based on double four-bar linkage. J. Mech. Eng. 47(11), 14–22 (2011)CrossRefGoogle Scholar
  7. 7.
    Delcomyn, F.: Walking robots and the central and peripheral control of locomotion in insects. Auton. Robots 7(3), 259–270 (1999)CrossRefGoogle Scholar
  8. 8.
    Hooper, S.L.: Central pattern generators. Curr. Biol. 10(5), R176–R179 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rossignol, S.: Locomotion and its recovery after spinal injury. Curr. Opin. Neurobiol. 10(6), 708–716 (2000)CrossRefGoogle Scholar
  10. 10.
    Cohen, A.H., Holmes, P.H., Rand, R.H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematic model. J. Math. Biol. 13, 345–369 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythms generators. Biol. Cybern. 56, 345–353 (1987)CrossRefGoogle Scholar
  12. 12.
    Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Rob. Res. 22(3–4), 187–202 (2003)CrossRefGoogle Scholar
  13. 13.
    Kimura, H., Fukuoka, Y., Konaga, K., Hada, Y., Takase, K.: Towards 3D adaptive dynamic walking of a quadruped robot on irregular terrain by using neural system model. In: Proceedings of IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS), pp. 2312–2317 (2001)Google Scholar
  14. 14.
    Kimura, H., Fukuoka, Y., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Rob. Res. 26(5), 475–490 (2007)CrossRefGoogle Scholar
  15. 15.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)zbMATHCrossRefGoogle Scholar
  16. 16.
    Arena, P., Fortuna, L., Frasca, M.: Multi-template approach to realize central pattern generators for artficial locomotion control. Int. J. Circuit Theory Appl. 30(4), 441–458 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Arena, P., Fortuna, L., Frasca, M.: Attitude control in walking hexapod robots: an analogic spatio-temporal approach. Int. J. Circuit Theory Appl. 30(4), 349–362 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Arena, P., Fortuna, L., Frasca, M., Sicurella, G.: An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Trans. Syst. Man Cybern. 34(4), 1823–1837 (2004)CrossRefGoogle Scholar
  19. 19.
    Inagaki, S., Yuasa, H., Arai, T.: CPG model for autonomous decentralized multi-legged robot systemgeneration and transition of oscillation patterns and dynamics of oscillators. Robot. Auton. Syst. 44, 171–179 (2003)CrossRefGoogle Scholar
  20. 20.
    Inagaki, S., Yuasab, H., Suzuki, T., Arai, T.: Wave CPG model for autonomous decentralized multi-legged robot: gait generation and walking speed control. Robot. Auton. Syst. 54, 118–126 (2006)CrossRefGoogle Scholar
  21. 21.
    Manoonpong, P., Pasemann, F., Wörgötter, F.: Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robot. Auton. Syst. 56, 265–288 (2008)CrossRefGoogle Scholar
  22. 22.
    Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  23. 23.
    Steingrube, S., Timme, M., Wörgötter, F., Manoonpong, P.: Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224–230 (2010)CrossRefGoogle Scholar
  24. 24.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  25. 25.
    Hughes, G.M.: Locomotion: terrestrial. In: Rockstein, M. (ed.) The Physiology of Insecta, pp. 227–254. Academic Press, New York (1965)Google Scholar
  26. 26.
    Wilson, D.M.: Insect walking. Annu. Rev. Entomol. 11, 103–121 (1966)CrossRefGoogle Scholar
  27. 27.
    Donner, M.D.: Real-time Control of Walking. Birkhauser, Boston (1987)Google Scholar
  28. 28.
    Kar, D.C.: Design of statically stable walking robot: a review. J. Robot. Syst. 20(11), 671–686 (2003)zbMATHCrossRefGoogle Scholar
  29. 29.
    Buchli, J., Righetti, L., Ijspeert, A.J.: Engineering entrainment and adaptation in limit cycle systems—from biological inspiration to applications in robotics. Biol. Cybern. 95(6), 645–664 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kimura, H., Fukuoka, Y.: Adaptive dynamic walking of the quadruped on irregular terrain—autonomous adaptation using neural system model. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 436–443 (2000)Google Scholar
  31. 31.
    Ritzmann, R.E., Quinn, R.D., Fischer, M.S.: Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Struct Develop. 33, 361–379 (2004)CrossRefGoogle Scholar
  32. 32.
    Manoonpong, P., Pasemann, F., Wörgötter, F.: Reactive neural control for phototaxis and obstacle avoidance behavior of walking machines. International Journal of Mechanical Systems Science and Engineering 1(3), 172–177 (2007)Google Scholar
  33. 33.
    Uchitane, T., Hatanaka, T., Uosaki, K.: Evolution strategies for biped locomotion learning using nonlinear oscillators. In: Proceedings of SICE Annual Conference 2010, pp. 1458–1461 (2010)Google Scholar
  34. 34.
    Righetti, L., Ijspeert, A.J.: Design methodologies for central pattern generators: an application to crawling humanoids. In: Proceedings of Robotics: Science and Systems (RSS), pp. 191–198 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Weihai Chen
    • 1
  • Guanjiao Ren
    • 1
    Email author
  • Jianbin Zhang
    • 2
  • Jianhua Wang
    • 1
  1. 1.School of Automation Science and Electrical EngineeringBeijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.School of Mechanical Engineering and AutomationBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations