Advertisement

Journal of Intelligent & Robotic Systems

, Volume 66, Issue 3, pp 343–357 | Cite as

Image-Based Attitude Control of a Remote Sensing Satellite

  • Gregor Klančar
  • Sašo BlažičEmail author
  • Drago Matko
  • Gašper Mušič
Article

Abstract

This paper deals with the image-based control of a satellite for remote sensing. Approach is demonstrated by simulation where the position of the satellite is obtained with the Simplified General Perturbations Version 3 model and its orientation by simulating its dynamic and kinematic models. For a known position and orientation of the satellite the images are obtained using the satellite’s onboard camera, simulated by the Google Earth application. The orientation of the satellite is governed by reaction wheels, which produce the required moments to the satellite. The image-based control law using SIFT image features is applied to achieve an automatic reference-point observation on the Earth’s surface. Main contributions of the paper are the following: use of the same sensor for Earth observation and attitude control, simplicity of the approach, no need for explicit calibration of camera parameters and good tracking accuracy. Demonstrated simulation results and performance analysis confirm the approach applicability.

Keywords

Satellite Attitude control Satellite kinematic model Satellite dynamic model  Computer vision SIFT features 

Mathematics Subject Classifications (2010)

37N35 70B10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai, H., Wan, E., Song, X., Myronenko, A.: Vision-only Navigation and Control of Unmanned Aerial Vehicles Using the Sigma-Point Kalman Filter. ION NTM 2007, San Diego, CA, pp. 1264–1275 (2007)Google Scholar
  2. 2.
    Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for UAV navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. 57(1–4), 233–257 (2010). doi: 10.1007/s10846-009-9373-3 zbMATHCrossRefGoogle Scholar
  3. 3.
    Erhard, S., Wenzel, K.E., Zell, A.: Flyphone: visual self-localisation using a mobile phone as onboard image processor on a quadrocopter. J. Intell. Robot. Syst. 57, 451–465 (2010). doi: 10.1007/s10846-009-9360-8 CrossRefGoogle Scholar
  4. 4.
    Fan, Y., Ding, M., Liu, Z., Wang, D.: Novel remote sensing image registration method based on an improved SIFT descriptor. In: Proceedings of SPIE, vol. 6790, pp. 67903G.1–67903G.6 (2007)Google Scholar
  5. 5.
    Hoots, F.R.: In: Roehrich, R.L. (ed.) Spacetrack Report No.3. Department of Commerce National Technical Information Service, Springfield VA (1988)Google Scholar
  6. 6.
    Se, S., Little, D.L.J.: Mobile robot localisation and mapping with uncertainty using scale-invariant visual landmarks. Int. J. Rob. Res. 21(8), 735–758 (2002)CrossRefGoogle Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.: Demo software: SIFT keypoint detector. Available at http://www.cs.ubc.ca/~lowe/keypoints/ (2005)
  9. 9.
    Psiaki, M.L., Martel, F., Pal, P.K.: Three-axis attitude determination via Kalman filtering of magnetometer data. J. Guid. Control Dyn. 13(3), 506–514 (1990)CrossRefGoogle Scholar
  10. 10.
    Raj, E.S., Venkatraman, S., Varadan, G.: A fuzzy approach to region-of-interest coding in JPEG-2000 for ATR applications from high resolution satellite images. In: ICVGIP ’08: Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 1993–200. IEEE Computer Society (2008). doi: 10.1109/ICVGIP.2008.53
  11. 11.
    Renner, U., Buhl, M.: High precision interactive Earth observation with Lapan-Tubsat. In: Proceedings of the 4S Symposium Small Satellites, Systems and Services, Rhodos, Greece, 26–30 May 2008Google Scholar
  12. 12.
    Steyn, W.H.: A view finder control system for an earth observation satellite. Aerosp. Sci. Technol. 10, 248–255 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wertz, J.R.: Spacecraft Attitude Determination and Control. Reidel, Dordrecht (1978)CrossRefGoogle Scholar
  14. 14.
    Wicks, A., Silva-Curiel, A., Ward, J., Fouquet, M.: Advancing small satellite Earth observation: operational spacecraft. In: Planned Missions And Future Concepts, 14th Annual AIAA/USU Conference on Small Satellites, pp. 1–8 (2000)Google Scholar
  15. 15.
    Wertz, J.R., Larson, W.J.: Space Mission Analysis and Design. Kluwer, Boston, MA (1999)Google Scholar
  16. 16.
    Wong, A., Clausi, D.A.: AISIR: automated inter-sensor/inter-band satellite image registration using robust complex wavelet feature representations. Pattern Recogn. Lett. (2010). doi: 10.1016/j.patrec.2009.05.016

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gregor Klančar
    • 1
    • 2
  • Sašo Blažič
    • 1
    • 2
    Email author
  • Drago Matko
    • 1
    • 2
  • Gašper Mušič
    • 1
    • 2
  1. 1.SPACE-SILjubljanaSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations