Journal of Intelligent & Robotic Systems

, Volume 65, Issue 1–4, pp 409–416 | Cite as

Reactive Path Planning for Micro Air Vehicles Using Bearing-only Measurements

  • Rajnikant Sharma
  • Jeffery B. Saunders
  • Randal W. Beard
Article

Abstract

Autonomous path planning of Micro Air Vehicles (MAVs) in an urban environment is a challenging task because urban environments are dynamic and have variety of obstacles, and the locations of these obstacles may not be available a priori. In this paper we develop a reactive guidance strategy for collision avoidance using bearing-only measurements. The guidance strategy can be used to avoid collision from circular obstacles and to follow straight and curved walls at safe distance. The guidance law moves a obstacle in the sensor field-of-view to a desired constant bearing angle, which causes the MAV to maintain a constant distance from the obstacle. We use sliding mode control theory to derive the guidance law, which is fast, computationally inexpensive, and guarantees collision avoidance.

Keywords

MAV Path planning Collision avoidance Sliding mode control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saha, M., Latombe, J.-C.: Finding narrow passages with probabilistic roadmaps: the small step retraction method. In: International Conference on Intelligent Robots and Systems, pp. 622–627 (2005)Google Scholar
  2. 2.
    Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipulation planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 113–120. Minneapolis, MN (1996)Google Scholar
  3. 3.
    Kavraki, L.E., S̆vestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)Google Scholar
  4. 4.
    Cheng, P., Shen, Z., LaValle, S.M.: Using Randomization to Find and Optimize Trajectories for Nonlinear Systems. In: Proceedings of Annual Allerton Conference on Communications, Control, Computing (2000)Google Scholar
  5. 5.
    Kim, J., Ostrowski, J.P.: Motion planning of aerial robot using rapidly-exploring random trees with dynamic constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2200–2205. Taipei, Taiwan (2003)Google Scholar
  6. 6.
    Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 995–1001. San Francisco, CA (2000)Google Scholar
  7. 7.
    LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. TR 98-11, Computer Science Dept., Iowa State University (1998)Google Scholar
  8. 8.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, B.R., Lynch, K.M., Rus, D., Peters, A.K. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. Wellesley, MA (2001)Google Scholar
  9. 9.
    LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning, vol. 20(5), pp. 378–400 (2001)Google Scholar
  10. 10.
    Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., Reif, J.H.: Narrow passage sampling for probabilistic roadmap planning. IEEE Trans. Robot. 21(6), 1105–1115 (2005)CrossRefGoogle Scholar
  11. 11.
    Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 995–1001 (2000)Google Scholar
  12. 12.
    Schwarzer, F., Saha, M., Latombe, J.-C.: Adaptive dynamic collision checking for single and multiple articulated robots in complex environments. IEEE Trans. Robot. 21(3), 338–353 (2005)CrossRefGoogle Scholar
  13. 13.
    Vadakkepat, P., Tan, K.C., Ming-Liang, W.: Evolutionary artificial potential fields and their application in real time robot path planning. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 256–263 (2000)Google Scholar
  14. 14.
    Park, M.G., Jeon, J.H., Lee, M.C.: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. In: IEEE International Symposium on Industrial Electronics, vol. 3, pp. 1530–1535 (2001)Google Scholar
  15. 15.
    Ghosh, R., Tomlin, C.: Maneuver Design for Multiple Aircraft Conflict Resolution. In: Proceedings of the American Control Conference (2000)Google Scholar
  16. 16.
    Barraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 22(2), 224–241 (1992)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Saunders, J.B., Call, B., Curtis, A., Beard, R.W., McLain, T.W.: Static and Dynamic Obstacle Avoidance in Miniature Air Vehicles. AIAA Infotech@Aerospace (2005)Google Scholar
  18. 18.
    Saunders, J., Beard, R.: Reactive vision based obstacle avoidance camera field of view constraints. In: Guidance Navigation and Control Confrence (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rajnikant Sharma
    • 1
    • 2
  • Jeffery B. Saunders
    • 3
  • Randal W. Beard
    • 1
    • 2
  1. 1.MAGICC LABBrigham Young UniversityProvoUSA
  2. 2.Department of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA
  3. 3.Raytheon Missle SystemsTucsonUSA

Personalised recommendations