Journal of Intelligent & Robotic Systems

, Volume 66, Issue 1–2, pp 273–300 | Cite as

Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus

  • Stefan SchifferEmail author
  • Alexander Ferrein
  • Gerhard Lakemeyer


In this paper, we present a thorough integration of qualitative representations and reasoning for positional information for domestic service robotics domains into our high-level robot control. In domestic settings for service robots like in the RoboCup@Home competitions, complex tasks such as “get the cup from the kitchen and bring it to the living room” or “find me this and that object in the apartment” have to be accomplished. At these competitions the robots may only be instructed by natural language. As humans use qualitative concepts such as “near” or “far”, the robot needs to cope with them, too. For our domestic robot, we use the robot programming and plan language Readylog, our variant of Golog. In previous work we extended the action language Golog, which was developed for the high-level control of agents and robots, with fuzzy set-based qualitative concepts. We now extend our framework to positional fuzzy fluents with an associated positional context called frames. With that and our underlying reasoning mechanism we can transform qualitative positional information from one context to another to account for changes in context such as the point of view or the scale. We demonstrate how qualitative positional fluents based on a fuzzy set semantics can be deployed in domestic domains and showcase how reasoning with these qualitative notions can seamlessly be applied to a fetch-and-carry task in a RoboCup@Home scenario.


Qualitative spatial representation Reasoning Golog Situation calculus Fuzzy sets Domestic service robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib, M.: Schema theory. In: The Handbook of Brain Theory and Neural Networks, pp. 830–834. MIT Press (1998)Google Scholar
  2. 2.
    Bhatt, M., Rahayu, J.W., Sterling, G.: Qualitative spatial reasoning with topological relations in the situation calculus. In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS), pp. 713–718. AAAI Press (2006)Google Scholar
  3. 3.
    Bloch, I.: Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. Int. J. Approx. Reason. 41(2), 77–95 (2006) (Advances in Fuzzy Sets and Rough Sets)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bloch, I., Saffiotti, A.: On the representation of fuzzy spatial relations in robot maps. In: Bouchon-Meunier, B., Foulloy, L., Yager, R. (eds.) Intelligent Systems for Information Processing, pp. 47–57. Elsevier, NL (2003)Google Scholar
  5. 5.
    Bolloju, N.: Formulation of qualitative models using fuzzy logic. Decis. Support Syst. 17(4), 275–298 (1996)CrossRefGoogle Scholar
  6. 6.
    Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00), pp. 355–362. AAAI Press/The MIT Press (2000)Google Scholar
  7. 7.
    Clementini, E., Felice, P.D., Hernandez, D.: Qualitative representation of positional information. Artif. Intell. 95(2), 317–356 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fundam. Inform. 46(1–2), 1–29 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    De Giacomo, G., Lésperance, Y., Levesque, H.J.: ConGolog, a concurrent programming language based on situation calculus. Artif. Intell. 121(1–2), 109–169 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dominey, P.F., Boucher, J.D.: Developmental stages of perception and language acquisition in a perceptually grounded robot. Cogn. Syst. Res. 6(3), 243–259 (2005)CrossRefGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: An introduction to fuzzy systems. Clin. Chim. Acta 270(1), 3–29 (1998)CrossRefGoogle Scholar
  12. 12.
    Dutta, S.: Qualitative spatial reasoning: a semi-quantitative approach using fuzzy logic. In: Buchmann, A.P., Günther, O., Smith, T.R., Wang, Y.F. (eds.) Proceedings of the First Symposium on Design and Implementation of Large Spatial Databases (SSD-89). Lecture Notes in Computer Science, vol. 409, pp. 345–364. Springer (1989)Google Scholar
  13. 13.
    Dylla, F., Kreutzmann, A.: Agent control by adaptive neighborhoods. In: Bhatt, M., Guesgen, H., Hazarika, S. (eds.) Proceedings of the InternationalWorkshop on Spatio-Temporal Dynamics, Co-located with the European Conference on Artificial Intelligence (ECAI-10), pp. 55–60. ECAI Workshop Proceedings, and SFB/TR 8 Spatial Cognition Report Series (2010)Google Scholar
  14. 14.
    Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. Reasoning, Action, and Interaction. Lecture Notes in Computer Science, vol. 3343, pp. 304–322. Springer (2005)Google Scholar
  15. 15.
    Ferrein, A.: golog.lua: towards a non-prolog implementation of GOLOG for embedded systems. In: Hoffmann, G. (ed.) Proceedings of the AAAI Spring Symposium on Embedded Reasoning (SS-10-04), pp. 20–28. AAAI Press (2010)Google Scholar
  16. 16.
    Ferrein, A.: Robot controllers for highly dynamic environments with real-time constraints. Künstl. Intell. 24(2), 175–178 (2010)CrossRefGoogle Scholar
  17. 17.
    Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains. Robot. Auton. Syst. 56(11), 980–991 (2008) (special issue on Semantic Knowledge in Robotics)CrossRefGoogle Scholar
  18. 18.
    Ferrein, A., Schiffer, S., Lakemeyer, G.: A fuzzy set semantics for qualitative fluents in the situation calculus. In: Proceedings of the International Conference on Intelligent Robotics and Applications (ICIRA’08). Lecture Notes in Computer Science, vol. 5314, pp. 498–509. Springer (2008)Google Scholar
  19. 19.
    Ferrein, A., Schiffer, S., Lakemeyer, G.: Embedding fuzzy controllers into golog. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-09), pp. 894–899. IEEE Press (2009)Google Scholar
  20. 20.
    Ferrein, A., Steinbauer, G.: On the way to high-level programming for resource-limited embedded systems with GOLOG. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) Proceedings of the 2nd International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2010). Lecture Notes in Computer Science, vol. 6472, pp. 229–240. Springer (2010)Google Scholar
  21. 21.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pp. 162–178. Springer (1992)Google Scholar
  22. 22.
    Freksa, C., Zimmermann, K.: On the utilization of spatial structures for cognitively plausible and efficient reasoning. In: IEEE International Conference on Systems Man and Cybernetics, pp. 261–266. IEEE Press (1992)Google Scholar
  23. 23.
    Grosskreutz, H.: Probabilistic projection and belief update in the pGOLOG framework. In: Proceedings of the 2nd Cognitive Robotics Workshop (CogRob’00) at the 14th European Conference on Artificial Intelligence (ECAI’2000), pp. 34–41 (2000)Google Scholar
  24. 24.
    Grosskreutz, H., Lakemeyer, G.: cc-Golog—an action language with continous change. Log. J. IGPL 11(2), 179–221 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hernandez, D.: Relative representation of spatial knowledge: the 2-d case. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 373–385. Kluwer, Dordrecht (1991)Google Scholar
  26. 26.
    Hernandez, D., Clementini, E., Felice, P.D.: Qualitative distances. In: Kuhn, W., Frank, A. (eds.) Spatial Information Theory: a Theoretical Basis for GIS. Lecture Notes in Computer Science, vol. 988, pp. 45–58. Springer (1995)Google Scholar
  27. 27.
    Isermann, R.: On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Trans. Syst. Man Cybern., Part A 28(2), 221–235 (1998)CrossRefGoogle Scholar
  28. 28.
    Jacobs, S., Ferrein, A., Lakemeyer, G.: Controlling unreal tournament 2004 bots with the logic-based action language golog. In: Young, R.M., Laird, J.E. (eds.) Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 151–152. AAAI Press (2005)Google Scholar
  29. 29.
    Levesque, H., Lakemeyer, G.: Cognitive robotics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, chap. 23, pp. 869–886. Elsevier (2008)Google Scholar
  30. 30.
    Levesque, H., Pirri, F., Reiter, R.: Foundations for a calculus of situations. Electron. Trans. Artif. Intell. (ETAI) 2(3–4), 159–178 (1998)MathSciNetGoogle Scholar
  31. 31.
    Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: a logic programming language for dynamic domains. J. Log. Program. 31(1–3), 59–84 (1997)zbMATHCrossRefGoogle Scholar
  32. 32.
    Liu, H., Brown, D.J., Coghill, G.M.: Fuzzy qualitative robot kinematics. IEEE Trans. Fuzzy Syst. 16(3), 808–822 (2008)CrossRefGoogle Scholar
  33. 33.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)zbMATHGoogle Scholar
  34. 34.
    McDermott, D., Davis, E.: Planning routes through uncertain territory. Artif. Intell. 22(2), 107–156 (1984)CrossRefGoogle Scholar
  35. 35.
    Mendel, J.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)CrossRefGoogle Scholar
  36. 36.
    Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granularity. In: Proceedings of the Workshop on Agents in Real-Time and Dynamic Environments (IJCAI 05) (2005)Google Scholar
  37. 37.
    Müller, R., Röfer, T., Lankenau, A., Musto, A., Stein, K., Eisenkolb, A.: Coarse qualitative descriptions in robot navigation. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition II, Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications. Lecture Notes in Computer Science, vol. 1849, pp. 265–276. Springer (2000)Google Scholar
  38. 38.
    Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K.: From motion observation to qualitative motion representation. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition II, Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications. Lecture Notes in Computer Science, vol. 1849, pp. 115–126. Springer (2000)Google Scholar
  39. 39.
    Nordvik, J.P., Smets, P., Magrez, P.: Fuzzy qualitative modeling. In: Bouchon, B., Saitta, L., Yager, R.R. (eds.) Uncertainty and Intelligent Systems: Proceedings of the 2nd International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Lecture Notes in Computer Science, vol. 313, pp. 231–238. Springer (1988)Google Scholar
  40. 40.
    Passino, M., Yurkovich, S.: Fuzzy Control. Addison-Wesley-Longman (1998)Google Scholar
  41. 41.
    Piaget, J.: The construction of reality in the child. J. Consult. Psychol. 19(1), 77–77 (1955)Google Scholar
  42. 42.
    Pommerening, F., Wölfl, S., Westphal, M.: Right-of-way rules as use case for integrating GOLOG and qualitative reasoning. In: Proceedings of the 32nd Annual German Conference on AI (KI 2009), pp. 468–475. Springer, New York Inc (2009)Google Scholar
  43. 43.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning (KR’92), pp. 165–176. Morgan Kaufmann (1992)Google Scholar
  44. 44.
    Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press (2001)Google Scholar
  45. 45.
    Renz, J., Nebel, B.: Qualitative Spatial Reasoning Using Constraint Calculi. Handbook of Spatial Logics, pp. 161–215 (2007)Google Scholar
  46. 46.
    Robinson, V.B.: Individual and multipersonal fuzzy spatial relations acquired using human-machine interaction. Fuzzy Sets Syst. 113(1), 133–145 (2000)zbMATHCrossRefGoogle Scholar
  47. 47.
    Saffiotti, A.: Fuzzy logic in autonomous robotics: behavior coordination. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 573–578. IEEE Press (1997)Google Scholar
  48. 48.
    Schiffer, S., Ferrein, A., Lakemeyer, G.: Football is coming home. In: Proceedings of the 2006 International Symposium on Practical Cognitive Agents and Robots (PCAR’06), pp. 39–50. ACM, New York, NY, USA (2006)CrossRefGoogle Scholar
  49. 49.
    Schiffer, S., Ferrein, A., Lakemeyer, G.: Fuzzy representations and control for domestic service robots in GOLOG. In: Iocchi, L., del Solar, J.R., van der Zant, T. (eds.) Domestic Service Robots in the Real World. Workshop Proceedings of the International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2010), pp. 183–192. Darmstadt, Germany (2010)Google Scholar
  50. 50.
    Schiffer, S., Niemüller, T., Doostdar, M., Lakemeyer, G.: Allemaniacs@home 2009 team description. In: Proceedings CD RoboCup 2009. Graz, Austria (2009)Google Scholar
  51. 51.
    Schockaert, S., Cornells, C., De Cock, M., Kerre, E.: Fuzzy spatial relations between vague regions. In: Proc. 3rd International IEEE Conference on Intelligent Systems, pp. 221–226 (2006)Google Scholar
  52. 52.
    Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)CrossRefGoogle Scholar
  53. 53.
    Tikk, D., Biro, G., Gedeon, T., Koczy, L., Yang, J.D.: Improvements and critique on Sugeno’s and Yasukawa’s qualitative modeling. IEEE Trans. Fuzzy Syst. 10(5), 596–606 (2002)CrossRefGoogle Scholar
  54. 54.
    van der Zant, T., Wisspeintner, T.: Robocup x: a proposal for a new league where robocup goes real world. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup. LNCS, vol. 4020, pp. 166–172. Springer (2005)Google Scholar
  55. 55.
    van der Zant, T., Wisspeintner, T.: Robotic Soccer, chap. RoboCup@Home: Creating and Benchmarking Tomorrows Service Robot Applications, pp. 521–528. I-Tech Education and Publishing (2007)Google Scholar
  56. 56.
    Yen, J., Lee, J.: Fuzzy logic as a basis for specifying imprecise requirements. In: IEEE International Conference on Fuzzy Systems, pp. 745–749 (1993)Google Scholar
  57. 57.
    Zadeh, L.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1(1), 89–100 (1989)CrossRefGoogle Scholar
  58. 58.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stefan Schiffer
    • 1
    Email author
  • Alexander Ferrein
    • 1
  • Gerhard Lakemeyer
    • 1
  1. 1.Knowledge-based Systems GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations