Advertisement

Journal of Intelligent & Robotic Systems

, Volume 65, Issue 1–4, pp 325–344 | Cite as

Image Based and Hybrid Visual Servo Control of an Unmanned Aerial Vehicle

  • Zehra Ceren
  • Erdinç Altuğ
Article

Abstract

The use of unmanned aerial vehicles (UAVs) for military, scientific, and civilian sectors are increasing drastically in recent years. This study presents algorithms for the visual-servo control of an UAV, in which a quadrotor helicopter has been stabilized with visual information through the control loop. Unlike previous study that use pose estimation approach which is time consuming and subject to various errors, the visual-servo control is more reliable and fast. The method requires a camera on-board the vehicle, which is already available on various UAV systems. The UAV with a camera behaves like an eye-in-hand visual servoing system. In this study the controller was designed by using two different approaches; image based visual servo control method and hybrid visual servo control method. Various simulations are developed on Matlab, in which the quadrotor aerial vehicle has been visual-servo controlled. In order to show the effectiveness of the algorithms, experiments were performed on a model quadrotor UAV, which suggest successful performance.

Keywords

Image based visual servo control Hybrid visual servo control UAV Flight stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaumette, F., Hutchinson, S.: Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  2. 2.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman, D., Hager, G., Morse, A.S. (eds.) The Conference of Vision and Control. Lecture Notes In Control and Information Sciences, vol. 237, pp. 66–78. Springer, New York (1998)Google Scholar
  3. 3.
    Deng, D., Wilson, W., Janabi-Sharifi, F.: Dynamic performance of the position-based visual servoing method in the cartesian and image spaces. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1, pp. 510–515. Las Vegas, Nevada (2003)Google Scholar
  4. 4.
    Martinet, P., Gallice, J., Khadraoui, D.: Vision based control law using 3d visual features. In: Proc. World Autom. Congr., Robot. Manuf. Syst., vol. 3, pp. 497–502. Montpellier, France (1996)Google Scholar
  5. 5.
    Espiau, B.: Effect of camera calibration errors on visual servoing in robotics. Presented at the 3rd Int. Symp. Exp. Robot., Kyoto, Japan (1993)Google Scholar
  6. 6.
    Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE Trans. Robot. Autom. 15(2), 238–250 (1999)CrossRefGoogle Scholar
  7. 7.
    Hamel, T., Mahony, R.: Visual servoing of an under actuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Autom. 18(2), 187–198 (2002)CrossRefGoogle Scholar
  8. 8.
    Romero, H., Benosman, R., Lozano, R.: Stabilizational Location of a Four Rotor Helicopter Applying Vision, pp. 3930–3936. ACC, Minneapolis (2006)Google Scholar
  9. 9.
    Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually-guided landing of an UAV. IEEE Trans. Robot. Autom. 19(3), 371–381 (2003)CrossRefGoogle Scholar
  10. 10.
    Azinheira, J.R., Rives, P., Carvalho, J.R.H., Silveira, G.F., de Paiva, E.D., Bueno, S.S.: Visual servo control for the hovering of an outdoor robotic airship. ICRA 3, 2787–2792 (2002)Google Scholar
  11. 11.
    Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. In: AIAA Guidance, Navigation and Control Conf. and Exhibit, San Francisco, USA (2005)Google Scholar
  12. 12.
    Bourquardez, O., Chaumette, F.: Visual Servoing of an Airplane for Auto-landing. IROS, San Diego (2007)Google Scholar
  13. 13.
    Altuǧ, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, DC (2002)Google Scholar
  14. 14.
    Proctor, A.A., Johnson, E.N., Apker, T.B.: Vision-only control and guidance for aircraft. J. Field Robot. 23(10), 863–890 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sukhatme, G.S., Mejias, L., Saripalli, S., Campoy, P.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field Robot. 23(3/4), 185–199 (2006)Google Scholar
  16. 16.
    Altuǧ, E., Ostrowski, J.P., Taylor, J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)CrossRefGoogle Scholar
  17. 17.
    Lazar, C., Burlacu, A.: Dynamic simulation model for image based visual servo control systems. In: IEEE International Conference on Robotics & Automation (2007)Google Scholar
  18. 18.
    Ceren, Z., Altuǧ, E.: Vision-based servo control of a quadrotor air vehicle. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA2009), DCC, Daejeon, Korea (2009)Google Scholar
  19. 19.
    Cowan, N., Chang, D.: Geometric visual servoing. IEEE T. Robot. 21(6), 1128–1138 (2005)CrossRefGoogle Scholar
  20. 20.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  21. 21.
    Erginer, B.: Quadrotor VTOL Arac\(\imath \)n\(\imath \)n Modellenmesi ve Kontrolü. Istanbul Technical University, Master of Science Thesis (in Turkish), Istanbul, Turkey (2007)Google Scholar
  22. 22.
    Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: Proc. of Int. C. on Robotics and Automation, pp. 4393–4398. New Orleans, LA, USA. (2004)Google Scholar
  23. 23.
    Michel, H., Rives, P.: Singularities in the determination of the situation of a robot effector from the perspective view of three points. INRIA Research Report, Tech. Rep. 1850 (1993)Google Scholar
  24. 24.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12, 651–670 (1996)CrossRefGoogle Scholar
  26. 26.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)CrossRefGoogle Scholar
  27. 27.
    Malis, E.: Improving vision-based control using efficient second-order minimization techniques. In: Proc. IEEE Int. Conf. Robot. Automat., pp. 1843–1848 (2004)Google Scholar
  28. 28.
    Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: European Conference on Computer Vision, vol. 29, pp. 159–179. Dublin, Ireland (2000)Google Scholar
  29. 29.
    Fomena, R.T., Chaumette, F.: Improvements on visual servoing from spherical targets using a spherical projection model. IEEE Trans. Robot. 25(4), 874–886 (2009)Google Scholar
  30. 30.
    Hadj-Abdelkader, H., Mezouar, Y., Martinet, P.: Decoupled visual servoing based on the spherical projection of a set of points. In: IEEE International Conference on Robotics and Automation, Kobe International Conference Center pp. 1110–1115. Kobe, Japan (2009)Google Scholar
  31. 31.
    Fomena, R.T., Chaumette, F.: Visual servoing from spheres using a spherical projection model. In: Proc. IEEE ICRA, pp. 2080–2085, Rome, Italy (2007)Google Scholar
  32. 32.
    Cervera, E.: Visual Servoing Toolbox. Jaume I University, Castello (2003)Google Scholar
  33. 33.
    Matrox Imaging Library. http://www.matrox.com. Accessed 23 July 2010

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.System Dynamics and Control Graduate ProgramIstanbul Technical UniversityIstanbulTurkey
  2. 2.Mechanical Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations