Journal of Intelligent & Robotic Systems

, Volume 63, Issue 2, pp 323–358 | Cite as

A Generic Framework for Distributed Multirobot Cooperation

  • Sanem Sariel-Talay
  • Tucker R. Balch
  • Nadia Erdogan


DEMiR-CF is a generic framework designed for a multirobot team to efficiently allocate tasks among themselves and achieve an overall mission. In the design of DEMiR-CF, the following issues were particularly investigated as the design criteria: efficient and realistic representation of missions, efficient allocation of tasks to cooperatively achieve a global goal, maintenance of the system coherence and consistency by the team members, detection of the contingencies and recover from various failures that may arise during runtime, efficient reallocation of tasks (if necessary) and reorganization of team members (if necessary). DEMiR-CF is designed to address different types of missions from the simplest to more complex ones, including missions with interrelated tasks and multi-resource (robot) requirements. Efficiency of the framework is validated through experiments in three different types of domains.


Multirobot systems Distributed multirobot cooperation Task allocation Incremental task selection Robustness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alami, R., Botelho, S.C.: Plan-based multi-robot cooperation. In: Advances in Plan-Based Control of Robotic Agents (2001)Google Scholar
  2. 2.
    Alami, R., Ingrand, F., Qutub, S.: A scheme for coordinating multi-robot planning activities and plans execution. In: Thirteenth European Conference On Artificial Intellingence (1998)Google Scholar
  3. 3.
  4. 4.
    Balch, T., Arkin, R.C.: Communication in reactive multiagent systems. Auton. Robots 1(1), 1–25 (1994)CrossRefGoogle Scholar
  5. 5.
    Botelho, S., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (1999)Google Scholar
  6. 6.
    Brucker, P.: Scheduling Algorithms. Springer, New York (2001)zbMATHGoogle Scholar
  7. 7.
    Brucker, P.: Scheduling and constraint propagation. Discrete Appl. Math. 123, 227–256 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brucker, P., Knust, S.: Complex Scheduling. Springer, New York (2006)zbMATHGoogle Scholar
  9. 9.
  10. 10.
    Dahl, T.S., Mataric, M.J., Sukhatme, G.S.: Emergent robot differentiation for distributed multi-robot task allocation. In: Distributed Autonomous Robotic Systems (DARS) (2004)Google Scholar
  11. 11.
    DEMiR-CF Scenarios: Khepera II DEMiR-CF Videos. (2009)
  12. 12.
    desJardins, M., Durfee, E., Ortiz, C., Wolverton, M.J.: Survey of research in distributed, continual planning. AI Mag. 20(4), 13–22 (1999)Google Scholar
  13. 13.
    Dias, M.: Traderbots: A New Paradigm for Robust and Efficient Multirobot Coordination in Dynamic Environments. Phd thesis, Robotics Institute, Carnegie Mellon University (2004)Google Scholar
  14. 14.
    Dias, M., Zinck, M., Zlot, R.M., Stentz, A.: Robust multirobot coordination in dynamic environments. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (2004)Google Scholar
  15. 15.
    Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  16. 16.
    Finin, T., Labrou, Y., Mayfield, J.: KQML as an Agent Communication Language. MIT Press, Cambridge. Chap Software Agents (1997)Google Scholar
  17. 17.
    FIPA ACL: FIPA ACL Message Structure Specification. (2002)
  18. 18.
    Gancet, J., Hattanberger, G., Alami, R., Lacroix, S.: Task planning and control for a multi-uav system: Architecture and algorithms. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2005)Google Scholar
  19. 19.
    Gerkey, B., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  20. 20.
    Gerkey, B., Mataric, M.J.: A formal analysis and taxonomy of task allocation. Int. J. Rob. Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  21. 21.
    Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl. Eng. Rev. 19(4), 281–316 (2005)CrossRefGoogle Scholar
  22. 22.
    Lemaire, T., Alami, R., Lacroix, S.: A distributed task allocation scheme in multi-uav context. In: IEEE Intl. Conf. on Robotics and Automation (ICRA) (2004)Google Scholar
  23. 23.
    Ossowski, S.: Co-ordination in Artificial Agent Societies, Social Structure and Its Implications for Autonomous Problem-Solving Agents. Springer, New York (1999)Google Scholar
  24. 24.
    Paquet, S.: Distributed Decision-Making and Task Coordination in Dynamic, Uncertain and Real-Time Multiagent Environments. Phd thesis, Laval University, Quebec (2006)Google Scholar
  25. 25.
    Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)CrossRefGoogle Scholar
  26. 26.
    Parker, L.E., Tang, F.: Building multi-robot coalitions through automated task solution synthesis. Proc. IEEE (Special Issue on Multi-Robot Systems) 94(7), 1289–1305 (2006)Google Scholar
  27. 27.
    Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services. Springer, New York (2005)zbMATHGoogle Scholar
  28. 28.
    Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, New York (1994)Google Scholar
  29. 29.
    Sariel, S.: An Integrated Planning, Scheduling and Execution Framework for Multi-Robot Cooperation and Coordination. Phd thesis, Istanbul Technical University, Turkey (2007)Google Scholar
  30. 30.
    Sariel, S., Balch, T., Erdogan, N.: Incremental multi-robot task selection for resource constrained and interrelated tasks. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2007)Google Scholar
  31. 31.
    Sariel, S., Balch, T., Erdogan, N.: Naval mine countermeasure missions: a distributed, incremental multirobot task selection scheme. IEEE Robot. Autom. Mag. 15(1), 45–52 (2008)CrossRefGoogle Scholar
  32. 32.
    Sariel, S., Balch, T., Erdogan, N.: Multiple traveling robot problem: A solution based on dynamic task selection and robust execution. IEEE/ASME Trans. Mechatron. 14(2), 198–206 (2009)CrossRefGoogle Scholar
  33. 33.
    Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101, 165–200 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Smith, R.G.: The contract net protocol: high level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  35. 35.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar
  36. 36.
    Vig, L., Adams, J.A.: Issues in multi-robot coalition formation. In: Multi-Robot Systems. From Swarms to Intelligent Automata, vol. III, pp. 15–26 (2005)Google Scholar
  37. 37.
    WEBOTS: Webots User Guide (2009)Google Scholar
  38. 38.
    Weglarz, J.: Project Scheduling: Recent Models, Algorithms and Applications. Kluwer, Dordrecht (1999)Google Scholar
  39. 39.
    Zlot, R., Stentz, A.: Market-based multirobot coordination for complex tasks. Int. J. Rob. Res. 25(1), 73–101 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sanem Sariel-Talay
    • 1
  • Tucker R. Balch
    • 2
  • Nadia Erdogan
    • 1
  1. 1.Department of Computer EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.College of ComputingGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations