Journal of Intelligent & Robotic Systems

, Volume 64, Issue 3–4, pp 625–649 | Cite as

Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas

  • Arnau RamisaEmail author
  • Alex Goldhoorn
  • David Aldavert
  • Ricardo Toledo
  • Ramon Lopez de Mantaras


Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.


Visual homing Biologically inspired methods Local features Robot navigation 

Mathematics Subject Classifications (2010)

68T40 68T45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Busquets, D.: A Multiagent Approach to Qualitative Navigation in Robotics. PhD Dissertation, Universitat Politècnica de Catalunya (2003)Google Scholar
  2. 2.
    Busquets, D., Sierra, C., de Mantaras, R.L.: A multiagent approach to qualitative landmark-based navigation. Auton. Robots 15(2), 129–154 (2003)CrossRefGoogle Scholar
  3. 3.
    Carwright, B.A., Collet, T.S.: Landmark learning in bees: experiments and models. J. Comp. Physiol. 151, 521–543 (1983)CrossRefGoogle Scholar
  4. 4.
    Chaudhari, P.: Localization using Average Landmark Vector in the presence of clutter. In: Nature & Biologically Inspired Computing, 2009. World Congress on NaBIC 2009, pp. 1592–1595. IEEE (2010)Google Scholar
  5. 5.
    Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition, unpublished manuscript:∼edelman/archive.html, University of Cornell (1997)
  6. 6.
    Franz, M., Stürzl, W., Hübner, W., Mallot, H.: A robot system for biomimetic navigation—from snapshots to metric embeddings of view graphs. robotics and cognitive approaches to spatial mapping, pp. 297–314 (2008)Google Scholar
  7. 7.
    Franz, M.O., Schölkopf, B., Mallot, H.A.,, Bülthoff, H.H.: Where did I take that snapshot? Scene-based homing by image matching. Biol. Cybern. 79, 191–202 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Goedemé, T., Nuttin, M., Tuytelaars, T., Van Gool, L.: Omnidirectional vision based topological navigation. Int. J. Comput. Vis. 74(3), 219–236 (2007)CrossRefGoogle Scholar
  9. 9.
    Goldhoorn, A.: Solving Ambiguity in Global Localization of Autonomous Robots. Master’s thesis, University of Groningen (2008)Google Scholar
  10. 10.
    Goldhoorn, A., Ramisa, A., de Mantaras, R.L., Toledo, R.: Robot Homing Simulations Using the Average Landmark Vector Method. Tech. Rep. RR-IIIA-2007-03, IIIA-CSIC, Bellaterra (2007)Google Scholar
  11. 11.
    Goldhoorn, A., Ramisa, A., de Mantaras, R.L., Toledo, R.: Using the average landmark vector method for robot homing. In: 19th International Conference of the ACIA, IOS Press, Frontiers in Artificial Intelligence and Applications, vol. 163, pp. 331–338 (2007)Google Scholar
  12. 12.
    Hafner, V., Möller, R.: Learning of visual navigation strategies. In: European Workshop on Learning Robots (EWLR). Prague (2001)Google Scholar
  13. 13.
    Hafner, V.V.: Adaptive homing: robotic exploration tours. Adapt. Behav. 9(3/4), 131–141 (2001)CrossRefGoogle Scholar
  14. 14.
    Hong, J., Tan, X., Pinette, B., Weiss, R., Riseman, E.: Image-based homing. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 620–625 (1991)Google Scholar
  15. 15.
    Labrosse, F.: Short and long-range visual navigation using warped panoramic images. Robot. Auton. Syst. 55(9), 675–684 (2007)CrossRefGoogle Scholar
  16. 16.
    Lambrinos, D., Möller, R., Pfeifer, R., Wehner, R.: Landmark navigation without snapshots: the average landmark vector model. In: Elsner, N., Wehner, R. (eds.) Proc 26th Göttingen Neurobiology Conference. Thieme-Verlag (1998)Google Scholar
  17. 17.
    Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 30(1–2), 39–64 (2000)CrossRefGoogle Scholar
  18. 18.
    Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vision Comput. 15(6), 415–434 (1997)CrossRefGoogle Scholar
  19. 19.
    López-Nicolis, G., Guerrero, J., Sagüés, C.: Multiple homographies with omnidirectional vision for robot homing. Robot. Auton. Syst. 58(6), 773–783 (2010)CrossRefGoogle Scholar
  20. 20.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV ’99: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE Computer Society, Washington (1999)CrossRefGoogle Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proceedings of the British Machine Vision Conference, vol. 1, pp. 384–393. BMVA, London (2002)Google Scholar
  23. 23.
    McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 39–46. ACM Press, New York (1995)CrossRefGoogle Scholar
  24. 24.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(30), 43–72 (2005)CrossRefGoogle Scholar
  25. 25.
    Möller, R.: Insect visual homing strategies in a robot with analog processing. Biol. Cybern. (Special issue: Navigation in Biological and Artificial Systems) 83, 231–243 (2000)zbMATHGoogle Scholar
  26. 26.
    Möller, R.: Local visual homing by warping of two-dimensional images. Robot. Auton. Syst. 57(1), 87–101 (2009)CrossRefGoogle Scholar
  27. 27.
    Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Webb, B., Consi, T.R. (eds.) Biorobotics. Methods and Applications, pp 37–66. AAAI Press/MIT Press (2001)Google Scholar
  28. 28.
    Möller, R., Vardy, A., Kreft, S., Ruwisch, S.: Visual homing in environments with anisotropic landmark distribution. Auton. Robots 23(3), 231–245 (2007)CrossRefGoogle Scholar
  29. 29.
    Möller, R., Krzykawski, M., Gerstmayr, L.: Three 2D-warping schemes for visual robot navigation. Autonomous Robots, pp. 1–39 (2009)Google Scholar
  30. 30.
    Murphy-Chutorian, E., Trivedi, M.: N-tree disjoint-set forests for maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference (2006)Google Scholar
  31. 31.
    Pons, J., Hübner, W., Dahmen, H., Mallot, H.: Vision-based robot homing in dynamic environments. In: K. Schilling, (ed.) 13th IASTED International Conference on Robotics and Applications, Citeseer, pp. 293–298 (2007)Google Scholar
  32. 32.
    Ramisa, A.: Qualitative Navigation Using Panoramas. Master’s thesis, Universitat Autònoma de Barcelona (2006)Google Scholar
  33. 33.
    Ramisa, A., Tapus, A., Aldavert, D., Toledo, R., Lopez de Mantaras, R.: Robust vision-based robot localization using combinations of local feature region detectors. Auton. Robots 27(4), 373–385 (2009)CrossRefGoogle Scholar
  34. 34.
    Shum, H., Szeliski, R.: Panoramic Image Mosaics. Tech. Rep. MSR-TR-97-23, Microsoft Research (1997)Google Scholar
  35. 35.
    Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, vol. 31, pp. 251–258. ACM Press/Addison-Wesley Publishing Co., New York (1997)CrossRefGoogle Scholar
  36. 36.
    Usher, K., Ridley, P., Corke, P.: Visual servoing of a car-like vehicle-an application of omnidirectional vision. In: Robotics and Automation, 2003. Proceedings. IEEE International Conference on ICRA’03, vol. 3 (2003)Google Scholar
  37. 37.
    Vardy, A.: Biologically Plausible Methods for Robot Visual Homing. PhD Dissertation, Carleton University (2005)Google Scholar
  38. 38.
    Vinyals, M., Ramisa, A., Toledo, R.: An Evaluation of an Object Recognition Schema Using Multiple Region Detectors. Front. Artif. Intell. Appl. 163, 213 (2007)Google Scholar
  39. 39.
    Wehner, R.: Spatial organization of foraging behavior in individually searching desert ants, cataglyphis (Sahara Desert) and ocymyrmex (Namib Desert). Experientia, Suppl. 54, 15–42 (1987)Google Scholar
  40. 40.
    Wehner, R.: The polarization-vision project: championing organismic biology. Prog. Zool (Fortschr Zool) 39, 103–143 (1994)Google Scholar
  41. 41.
    Zeil, J., Hofmann, M., Chahl, J.: Catchment areas of panoramic snapshots in outdoor scenes. JOSA-A 20(3), 450–469 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Arnau Ramisa
    • 1
    Email author
  • Alex Goldhoorn
    • 1
  • David Aldavert
    • 2
  • Ricardo Toledo
    • 2
  • Ramon Lopez de Mantaras
    • 1
  1. 1.Artificial Intelligence Research InstituteIIIA - Spanish National Research Council, CSICBellaterraSpain
  2. 2.Computer Vision CenterCVC - Universitat Autonoma de Barcelona, UABBellaterraSpain

Personalised recommendations