Journal of Intelligent & Robotic Systems

, Volume 64, Issue 3–4, pp 323–351 | Cite as

Speciation in Behavioral Space for Evolutionary Robotics

  • Leonardo TrujilloEmail author
  • Gustavo Olague
  • Evelyne Lutton
  • Francisco Fernández de Vega
  • León Dozal
  • Eddie Clemente


In Evolutionary Robotics, population-based evolutionary computation is used to design robot neurocontrollers that produce behaviors which allow the robot to fulfill a user-defined task. However, the standard approach is to use canonical evolutionary algorithms, where the search tends to make the evolving population converge towards a single behavioral solution, even if the high-level task could be accomplished by structurally different behaviors. In this work, we present an approach that preserves behavioral diversity within the population in order to produce a diverse set of structurally different behaviors that the robot can use. In order to achieve this, we employ the concept of speciation, where the population is dynamically subdivided into sub-groups, or species, each one characterized by a particular behavioral structure that all individuals within that species share. Speciation is achieved by describing each neurocontroller using a representations that we call a behavior signature, these are descriptors that characterize the traversed path of the robot within the environment. Behavior signatures are coded using character strings, this allows us to compare them using a string similarity measure, and three measures are tested. The proposed behavior-based speciation is compared with canonical evolution and a method that speciates based on network topology. Experimental tests were carried out using two robot tasks (navigation and homing behavior), several training environments, and two different robots (Khepera and Pioneer), both real and simulated. Results indicate that behavior-based speciation increases the diversity of the behaviors based on their structure, without sacrificing performance. Moreover, the evolved controllers exhibit good robustness when the robot is placed within environments that were not used during training. In conclusion, the speciation method presented in this work allows an evolutionary algorithm to produce several robot behaviors that are structurally different but all are able to solve the same robot task.


Evolutionary robotics Speciation Behavioral space 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coello, C., Veldhuizen, D.V., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York, New York (2002)zbMATHGoogle Scholar
  2. 2.
    Darwen, P.J., Yao, X.: Speciation as automatic categorical modularization. IEEE Trans. Evol. Comput. 1(2), 101–108 (1997)CrossRefGoogle Scholar
  3. 3.
    DeJong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA, USA (2002)Google Scholar
  4. 4.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate, MA, USA (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dunn, E., Olague, G., Lutton, E.: Parisian camera placement for vision metrology. Pattern Recogn. Lett. 27(11), 1209–1219 (2006)CrossRefGoogle Scholar
  6. 6.
    Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence, 1st edn. The Morgan Kaufmann Series in Evolutionary Computation, Morgan Kaufmann (2001)Google Scholar
  7. 7.
    Floreano, D., Mattiussi, C.: Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. MIT Press, Cambridge, MA (2008)Google Scholar
  8. 8.
    Floreano, D., Sanderson, F.M.A.C.: Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst. Man Cybern. Part B 26(3), 396–407 (1996)CrossRefGoogle Scholar
  9. 9.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their Application, pp. 41–49. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA (1987)Google Scholar
  10. 10.
    Gomez, F.J., Miikkulainen, R.: Solving non-Markovian control tasks with neuro-evolution. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, pp. 1356–1361. Morgan Kaufmann, San Mateo, CA (1999)Google Scholar
  11. 11.
    Hocaoǧlu, C., Sanderson, A.C.: Planning multiple paths with evolutionary speciation. IEEE Trans. Evol. Comput. 5(3), 169–191 (2001)CrossRefGoogle Scholar
  12. 12.
    Landrin-Schweitzer, Y., Collet, P., Lutton, E., Prost, T.: Introducing lateral thinking in search engines with interactive evolutionary algorithms. In: SAC ’03: Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 214–219. ACM Press, New York, NY, USA (2003)CrossRefGoogle Scholar
  13. 13.
    Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA (1995)Google Scholar
  14. 14.
    Martin, P., Bateson, P.: Measuring Behaviour: An Introductory Guide, 3rd edn. Cambridge University Press, Cambridge, UK (2007)Google Scholar
  15. 15.
    Mattiussi, C., Waibel, M., Floreano, D.: Measures of diversity for populations and distances between individuals with highly reorganizable genomes. Evol. Comput. 12(4), 495–515 (2004)CrossRefGoogle Scholar
  16. 16.
    Michel, O.: Khepera Simulator v. 2 User Manual. University of Nice-Sophia, Antipolis (1996)Google Scholar
  17. 17.
    Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)CrossRefGoogle Scholar
  18. 18.
    Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: Sridharan, S. (ed.) Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 762–767. Morgan Kaufman, San Francisco, California (1989)Google Scholar
  19. 19.
    Moriarty, D.E., Mikkulainen, R.: Efficient reinforcement learning through symbiotic evolution. Mach. Learn. 22(1–3), 11–32 (1996)Google Scholar
  20. 20.
    Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A probabilistic memetic framework. IEEE Trans. Evol. Comput. 13, 604–623 (2009)CrossRefGoogle Scholar
  21. 21.
    Nitschke, G., Schut, M.: Designing multi-rover emergent specialization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press (2008)Google Scholar
  22. 22.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: the Biology, Intelligence, and Technology of Self-Organizing Machines. Bradford Book (2004)Google Scholar
  23. 23.
    Ong, Y.S., Lim, M.H., Chen, X.: Research frontier: memetic computation-past, present & future. IEEE Comput. Intell. Mag. 5, 24–31 (2010)CrossRefGoogle Scholar
  24. 24.
    Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Mach. Learn. 32(1), 225–240 (1998)CrossRefzbMATHGoogle Scholar
  25. 25.
    Potter, M.: The design and analysis of a computational model of cooperative coevolution. Ph.D. thesis, George Mason University, Fairfax, VA, USA (1997)Google Scholar
  26. 26.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: a Practical Approach to Global Optimization (Natural Computing Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)zbMATHGoogle Scholar
  27. 27.
    Rosca, J.: Hierarchical learning with procedural abstraction mechanisms. Ph.D. thesis, Rochester, NY, USA (1997)Google Scholar
  28. 28.
    Savage, T.: Measurement and the explanation of adaptive and novel behaviors in real and artificial creatures. Cogn. Syst. Res. 5(1), 3–39 (2004)CrossRefGoogle Scholar
  29. 29.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar
  30. 30.
    Trujillo, L., Olague, G., Lutton, E., de Vega, F.F.: Discovering several robot behaviors through speciation. In: Giacobini, M., et al. (eds.) EvoWorkshops: the 4th European Workshop on Bio-inspired Heuristics for Design Automation (EvoHOT’07). Lecture Notes in Computer Science, vol. 4974, pp. 164–174, 26–28 March, Napoli, Italy, Springer (best paper award) (2008)Google Scholar
  31. 31.
    Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Proceeding from the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), pp. 511–518, 8–14 December, Kauai, HI, USA. IEEE Computer Society (2001)Google Scholar
  32. 32.
    Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Leonardo Trujillo
    • 1
    Email author
  • Gustavo Olague
    • 2
  • Evelyne Lutton
    • 3
  • Francisco Fernández de Vega
    • 4
  • León Dozal
    • 2
  • Eddie Clemente
    • 5
  1. 1.Instituto Tecnológico de TijuanaTijuanaMéxico
  2. 2.Departamento de Ciencias de la Computación, División de Física Aplicada, Centro de Investigación Científica y de Educación Superior de EnsenadaProyecto EvovisiónEnsenadaMéxico
  3. 3.AVIZ Team at INRIA Saclay Ile de-France, Bat. 490Université Paris-SudOrsay CEDEXFrance
  4. 4.Grupo de Evolución ArtificialUniversidad de ExtremaduraMeridaSpain
  5. 5.Tecnológico de Estudios Superiores de EcatepecEdo. de MéxicoMéxico

Personalised recommendations