Journal of Intelligent & Robotic Systems

, Volume 64, Issue 3–4, pp 401–426 | Cite as

A Modular Fuzzy Control Approach for Two-Wheeled Wheelchair

  • Salmiah Ahmad
  • Nazmul H. Siddique
  • M. Osman Tokhi


Wheelchairs on two wheels are becoming essential part of life for disabled persons. But designing control strategies for such wheelchairs is a challenging task due to the fact that they are highly nonlinear and unstable systems. The subtle design of the system mimics a double inverted pendulum with three actuators, one for each wheel, and one for chair position. The system starts to work with lifting the front wheels (casters) to the upright position and further with stabilizing in the upright position. The challenge resides in the design and implementation of suitable control strategies for the two-wheeled wheelchair so as to perform comparably similar to a normal four-wheeled wheelchair. A two-level modular fuzzy logic controller is proposed in this paper. A model of the standard wheelchair is also developed as a test and verification platform using Visual Nastran software integrated with Matlab.


Wheelchair dynamics Double inverted pendulum Fuzzy logic control Nonlinear system Upright stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bugeja M.: Non-linear swing-up and stabilizing control of an inverted pendulum system. In: The IEEE Region 8 EUROCON on Computer as a Tool, pp. 437–441 (2003)Google Scholar
  2. 2.
    Yamada, A., Yamakawa, S., Fujimoto, H.: Switching control for inverted pendulum system based on energy modification. In: SICE Annual Conference, pp. 2316–2321 (2004)Google Scholar
  3. 3.
    Muskinja, N., Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53(2), 631–639 (2006)CrossRefGoogle Scholar
  4. 4.
    Astrom, K.J., Iwase, M., Furuta, K., Akesson, J.: Safe manual control of pendulums—a human adaptive mechatronics perspective. International Journal of Assistive Robotics and Mechatronics 7(1), 3–11 (2006)Google Scholar
  5. 5.
    Yamakita, M., Iwashiro, M., Sugahara, Y., Furuta K: Robust swing up control of double pendulum. In: American Control Conference, pp. 290–295 (1995)Google Scholar
  6. 6.
    Cahyadi, A.I., Isarakorn, D., Benjanarasuth, T., Ngamwiwit, J., Komine, N.: Application of coefficient diagram method for rotational inverted pendulum control. In: Conference on Control, Automation, Robotics and Vision, pp. 1769–1773 (2004)Google Scholar
  7. 7.
    Farahmand, F., Elahi, A., Sedeh, R.S.: Swinging up and stabilizing a pendulum (Gyrobot). In: 13th Annual International Mechanical Engineering Conference, pp. 31–37 (2005)Google Scholar
  8. 8.
    Gordillo, F., Acosta, J.A., Aracil, J.: A new swing-up law for the furuta pendulum. Int. J. Control. Autom. Syst. 76(8), 836–844 (2003)MathSciNetMATHGoogle Scholar
  9. 9.
    Segway Inc.: Segway-simply moving. Segway Inc. Accessed 1 June 2006 (2001)
  10. 10.
    Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C.: JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)CrossRefGoogle Scholar
  11. 11.
    Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. 21(3), 505–513 (2005)CrossRefGoogle Scholar
  12. 12.
    Chung, C.C., Hauser, J.: Nonlinear control of a swinging pendulum. Automatica 31(6), 851–862 (1995)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Eltohamy, K.G., Yuan Kuo, C.: Nonlinear generalized equations of motions for multi-link inverted pendulum systems. Int. J. Syst. Sci. 30(5), 505–513 (1999)MATHCrossRefGoogle Scholar
  14. 14.
    Yi, J., Yubazaki, N., Hirota, K.: Upswing and stabilization control of inverted pendulum system based on the SIRMs dynamically connected fuzzy inference model. Fuzzy Sets Syst. 122(1), 139–152 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vascak, J.: Fuzzy control of a physical double inverted pendulum. In: Computational Intelligence, vol. 1625, pp. 482–494. Springer, Berlin (1999)CrossRefGoogle Scholar
  16. 16.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  17. 17.
    Yurkovich, S., Widjaja, M.: Fuzzy controller synthesis for an inverted pendulum system. Control Eng. Pract. 4(4), 455–469 (1996)CrossRefGoogle Scholar
  18. 18.
    Miyagawa, T., Ishida, Y.: Neural network-based model reference control for inverted pendulum. In: IEEE International Conference on Neural Networks, pp. 640–644 (1995)Google Scholar
  19. 19.
    Ha, K.-J., Kim, H.-M.: A genetic approach to the attitude control of an inverted pendulum system. In: 9th IEEE International Conference on Tools with Artificial Intelligence, pp. 268–269 (1997)Google Scholar
  20. 20.
    Takahashi, Y., Ogawa, S., Machida, S.: Front wheel raising and inverse pendulum control of power assist wheel chair robot. In: The 25th Annual Conference of the IEEE Industrial Electronics Society, pp. 668–673 (1999)Google Scholar
  21. 21.
    Jeong, S., Takahashi, T.: Wheeled inverted pendulum type assistant robot: design concept and mobile control. Intelligent Service Robotics 1(3), 13–320 (2008)Google Scholar
  22. 22.
    Takahashi, Y., Ishikawa, N., Hagiwara, T.: Inverse pendulum controlled two wheel drive system. In: 40th SICE Annual Conference, pp. 112–115 (2001)Google Scholar
  23. 23.
    Takahashi, Y., Ishikawa, N., Hagiwara, T.: Soft raising and lowering of front wheels for inverse pendulum control wheel chair robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’03), pp. 3618–3623 (2003)Google Scholar
  24. 24.
    Takahashi, Y., Kohda, M.: Human riding experiments on soft front wheel raising of robotic wheelchair with inverse pendulum control. In: IEEE International Conference on Industrial Technology (ICIT’05), pp. 266–271 (2005)Google Scholar
  25. 25.
    Johnson & Johnson Company: Independence Ibot mobility system. Johnson & Johnson Company. Accessed 1 June 2007 (2001)
  26. 26.
    Ahmad, S.: Modelling and fuzzy control of two-wheeled wheelchair. Doctoral Dissertation, University of Sheffield, Sheffield (2010)Google Scholar
  27. 27.
    Gharooni, S.C., Awada, B., Tokhi, M.O.: Modelling and control of upright lifting wheelchair. In: Climbing and Walking Robots and the Support Technologies for Mobile Machines, (CLAWAR’05), London. Springer Lecture Notes, pp. 969–976 (2005)Google Scholar
  28. 28.
    Ming, A., Park, S., Nagata, Y., Shimojho, M.: Development of underwater robot using piezoelectric fiber composite. In: IEEE International Conference on Robotics and Automation Kobe, pp. 3821–3826 (2009)Google Scholar
  29. 29.
    Kypuros, J.A., Connolly, T.J.: Collaborative experimentation and simulation: a pathway to improving student conceptualization of the essentials of system dynamics and control theory. In: American Society for Engineering Education Annual Conference and Exposition (ASEE 05), Portland, pp. 1855–1864 (2005)Google Scholar
  30. 30.
    Wang, S.L.: Motion simulation with working model 2D and MSC.VisualNastran 4D. J. Comput. Softw. Engin. 1(2), 193–196 (2001)Google Scholar
  31. 31.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley-Interscience, New York (1990)Google Scholar
  32. 32.
    Stufflebeam, J.: An integrated systems approach to target tracking using hierarchical fuzzy control. Doctoral Dissertation, New Mexico State University (1998)Google Scholar
  33. 33.
    Bessacini, A.F., Pinkos, R.F.: A hierarchical fuzzy controller for intercept guidance with a forbidden zone. Technical Report, Naval Undersea Warfare Center Division, Newport (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Salmiah Ahmad
    • 1
  • Nazmul H. Siddique
    • 2
  • M. Osman Tokhi
    • 3
  1. 1.Department of Mechatronics EngineeringInternational Islamic University MalaysiaGombakMalaysia
  2. 2.School of Computing and Intelligent SystemsUniversity of UlsterColeraineUK
  3. 3.Department of Automatic Control and Systems EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations