Journal of Intelligent & Robotic Systems

, Volume 64, Issue 1, pp 77–95 | Cite as

Robot-Assisted Bridge Inspection

  • Robin R. Murphy
  • Eric Steimle
  • Michael Hall
  • Michael Lindemuth
  • David Trejo
  • Stefan Hurlebaus
  • Zenon Medina-Cetina
  • Daryl Slocum


The Center for Robot-Assisted Search and Rescue (CRASAR®) deployed a customized AEOS man-portable unmanned surface vehicle and two commercially available underwater vehicles (the autonomous YSI EcoMapper and the tethered VideoRay) for inspection of the Rollover Pass bridge in the Bolivar peninsula of Texas in the aftermath of Hurricane Ike. A preliminary domain analysis with the vehicles identified key tasks in subsurface bridge inspection (mapping of the debris field and inspecting the bridge footings for scour), control challenges (navigation under loss of GPS, underwater obstacle avoidance, and stable positioning in high currents without GPS), possible improvements to human-robot interaction (having additional display units so that mission specialists can view and operate on imagery independently of the operator control unit, incorporating 2-way audio to allow operator and field personnel to communicate while launching or recovering the vehicle, and increased state sensing for reliability), and discussed the cooperative use of surface, underwater, and aerial vehicles. The article posits seven milestones in the development of a fully functional UMV for bridge inspection: standardize mission payloads, add health monitoring, improve teleoperation through better human-robot interaction, add 3D obstacle avoidance, improve station-keeping, handle large data sets, and support cooperative sensing.


Security and rescue robots Underwater unmanned vehicles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy, R.R., Steimle, E., Lindemuth, M., Trejo, D., Hall, M., Slocum, D., Hurlebas, S., Medina-Cetina, Z.: Robot-assisted bridge inspection after Hurricane Ike. IEEE Workshop on Safety Security Rescue Robotics, pp. 1–5. IEEE, Denver (2009)Google Scholar
  2. 2.
    Brown, J.: Robot inspects damaged bridge. Civ. Eng. 78(3), 40 (2009)Google Scholar
  3. 3.
    Merriam, E.: MDSU-2 Arrives in Minneapolis Prepared to Help. 1 May 2010 (2007)Google Scholar
  4. 4.
    Goldwert, L.: Minneapolis Honors Bridge Collapse Victims. 1 May 2010 (2007)Google Scholar
  5. 5.
    Leibholz, S.: Trends in robotics and implications for the marine environment. OCEANS 1984, vol. 15, pp. 100–105 (1983)Google Scholar
  6. 6.
    Ageev, M.D., Kiselev, L.V., Shcherbatyuk, A.P.: Tasks for autonomous underwater robot. Fifth International Conference on Advanced Robotics, 1991. ‘Robots in Unstructured Environments’, 91 ICAR, pp. 1360–1364, vol. 2 (1991)Google Scholar
  7. 7.
    Murphy, R., Steimle, E., Griffin, E., Cullins, C., Hall, M., Pratt, K.: Cooperative use of unmanned sea surface and micro aerial vehicle at Hurricane Wilma. Journal of Field Robotics 25(3), 164–180 (2008)CrossRefGoogle Scholar
  8. 8.
    Steimle, E., Murphy, R., Hall, M., Lindemuth, M.: Unmmaned marine vehicle use at Hurricanes Wilma and Ike. MTS/IEEE OCEANS 2009, pp. 1–6. (2009)Google Scholar
  9. 9.
    Murphy, R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Erkmen, A.: Rescue Robotics. In: Sciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 1151–1174. Springer-Verlag (2008)Google Scholar
  10. 10.
    Anderson, B., Crowell, J.: Workhorse AUV: a cost-sensible new autonomous underwater vehicle for surveys/soundings, search & rescue, and research. In: Proceedings of MTS/IEEE OCEANS, 2005, pp. 1–6 (2005)Google Scholar
  11. 11.
    Lindemuth, M., Murphy, R., Steimle, E., Armitage, W., Dreger, K., Elliot, T., Hall, M., Kalyadin, D., Kramer, J., Palankar, M., Pratt, K., Griffin, C.: Sea-RAI: a Marsupial USV-UAV team for littoral inspection. IEEE Robot. Autom. Mag. (to appear, 2011)Google Scholar
  12. 12.
    Murphy, R., Stover, S., Pratt, K., Griffin, C.: Cooperative damage inspection with unmanned surface vehicle and micro unmanned aerial vehicle at Hurricane Wilma. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 9–9 (2006)Google Scholar
  13. 13.
    Watanabe, K., Nakamura, A.: A design of tiny basin test-bed for AUV multi agent. In: Proceedings of MTS/IEEE, OCEANS, 2005. pp. 1002–1008, vol. 2 (2005)Google Scholar
  14. 14.
    Meyrowitz, A.L., Blidberg, D.R., Michelson, R.C.: Autonomous vehicles. Proc. IEEE 84(8), 1147–1164 (1996)CrossRefGoogle Scholar
  15. 15.
    Castelin, S., Bernstein, P.: A notional scenario for the use of unmanned system groups in littoral warfare. 2004 IEEE/OES autonomous underwater vehicles, pp. 14– 19 (2004)Google Scholar
  16. 16.
    Alleman, P., Kleiner, A., Steed, C., Hook, D.: Development of a new unmanned semi-submersible (USS) vehicle. OCEANS 2009, MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges, pp. 1–6 (2009)Google Scholar
  17. 17.
    C. v. Alt, Allen, B., Austin, T., Forrester, N., Goldsborough, R., Purcell, M., Stokey, R.: Hunting for mines with REMUS: a high performance, affordable, free swimming underwater robot. OCEANS, 2001. MTS/IEEE Conference and Exhibition, pp. 117–122, vol. 1 (2001)Google Scholar
  18. 18.
    Bick, E.T., Barock, R.T.: CENTURION harbor surveillance test bed. In: Proceedings of MTS/IEEE OCEANS, 2005. pp. 1358–1363, vol. 2 (2005)Google Scholar
  19. 19.
    Healy, P.D., Bishop, B.E.: Sea-dragon: an amphibious robot for operation in the littorals. 41st Southeastern Symposium on System Theory, 2009. SSST 2009. pp. 266–270 (2009)Google Scholar
  20. 20.
    Farrell, J.A., Li, W., Pang, S., Arrieta, R.: Chemical plume tracing experimental results with a REMUS A.U.V. Ocean 2003 Marine Technology and Ocean Science Conference (2003)Google Scholar
  21. 21.
    Ohata, S., Ishii, K., Sakai, H., Tanaka, T., Ura, T.: Development of an autonomous underwater vehicle for observation of underwater structures. In: Proceedings of MTS/IEEE OCEANS, 2005, vol. 3, pp. 1928–1933 (2005)Google Scholar
  22. 22.
    Williams, S., Mahon, I.: Simultaneous localisation and mapping on the Great Barrier Reef. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 2, pp. 1771–1776 (2004)Google Scholar
  23. 23.
    Steimle, E.T., Hall, M.L.: Unmanned surface vehicles as environmental monitoring and assessment tools. OCEANS 2006, pp. 1–5 (2006)Google Scholar
  24. 24.
    Caccia, M., Bono, R., Bruzzone, G., Spirandelli, E., Veruggio, G., Stortini, A.M., Capodaglio, G.: Sampling sea surfaces with SESAMO: an autonomous craft for the study of sea-air interactions. IEEE Robot. Autom. Mag. 12(3), 95–105. 1070-9932 (2005)CrossRefGoogle Scholar
  25. 25.
    Schiavon, R., Finotello, R., Terribile, T.: The supervisory control of ARAMIS, a system for robotic inspection of sediments. OCEANS 2000 MTS/IEEE conference and exhibition, vol. 2, pp. 823–828 (2000)Google Scholar
  26. 26.
    Ribas, D., Ridao, P., Tardos, J.D., Neira, J.: Underwater SLAM in a marina environment. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007. pp. 1455–1460 (2007)Google Scholar
  27. 27.
    Ribas, D., Ridao, P., Neira, J., Tardos, J.D.: SLAM using an Imaging Sonar for Partially Structured Underwater Environments. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 5040–5045 (2006)Google Scholar
  28. 28.
    Whalen, J.E., Wallace, G.: Multi-platform sonar-based systems for submerged threats operating in littorals. Proceedings of MTS/IEEE, OCEANS, 2005. pp. 684–689, vol. 1 (2005)Google Scholar
  29. 29.
    Bibuli, M., Bruzzone, G., Caccia, M., Indiveri, G., Zizzari, A.A.: Line following guidance control: application to the Charlie unmanned surface vehicle. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 3641–3646 (2008)Google Scholar
  30. 30.
    Manley, J.E.: Development of the autonomous surface craft. IEEE Oceans, vol. 2, pp. 827–832 (1997)Google Scholar
  31. 31.
    Curcio, J., Leonard, J., Patrikalakis, A.: SCOUT—a low cost autonomous surface platform for research in cooperative autonomy. IEEE OCEANS, pp. 725–729 (2005)Google Scholar
  32. 32.
    Rae, G.J.S., Dunn, S.E.: On-line damage detection for autonomous underwater vehicles. Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, 1994. AUV ’94., pp. 383–392 (1994)Google Scholar
  33. 33.
    Pereira, A., Das, J., Sukhatme, G.S.: An experimental study of station keeping on an underactuated ASV. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008., pp. 3164–3171 (2008)Google Scholar
  34. 34.
    Duo-Min, H., Seet, G.G.L.: Underwater vision enhancement in turbid water by range-gated imaging system. Summaries of papers presented at the Conference on Lasers and Electro-Optics, 2001. CLEO ’01. Technical Digest, p. 378 (2001)Google Scholar
  35. 35.
    Murphy, R., Pratt, K., Burke, J.: Crew roles and operational protocols for Rotary-Wing Micro-UAVs in close urban environments. ACM SIGCHI/SIGART Human-Robot Interaction, pp. 73–80 (2008)Google Scholar
  36. 36.
    Wood, S., Rees, M., Pfeiffer, Z.: An autonomous self-mooring vehicle for littoral & coastal observations. OCEANS 2007—Europe, pp. 1–6 (2007)Google Scholar
  37. 37.
    Murphy, R., Burke, J.: From remote tool to shared roles. IEEE ROBOT. AUTOM. MAG. (special issue on New Vistas and Challenges for Teleoperation) 15(4), 39–49 (2008)Google Scholar
  38. 38.
    Qingping, L., Chengi, K.: Virtual tele-operation of underwater robots. IEEE International Conference on Robotics and Automation, 1997. Proceedings., 1997, vol. 2, pp. 1022–1027 (1997)Google Scholar
  39. 39.
    Murphy, C., Singh, H.: Human-guided autonomy for acoustically tethered underwater vehicles. OCEANS 2008, pp. 1–8 (2008)Google Scholar
  40. 40.
    Clegg, D., Peterson, M.: User operational evaluation system of unmanned underwater vehicles for very shallow water mine countermeasures. In: Proceedings OCEANS 2003, vol. 3, pp. 1417–1423 (2003)Google Scholar
  41. 41.
    Murphy, R., Stover, S.: Gaps analysis for rescue robots. ANS 2006: Sharing Solutions for Emergencies and Hazardous Environments (2006)Google Scholar
  42. 42.
    Eickstedt, D.P., Benjamin, M.R., Schmidt, H., Leonard, J.J.: Adaptive Control of heterogeneous marine sensor platforms in an autonomous sensor network. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 5514–5521 (2006)Google Scholar
  43. 43.
    Redfield, S.A.: Lane finding using homogeneous groups of cooperating autonomous vehicles (2004)Google Scholar
  44. 44.
    Yavnai, A.: Distributed decentralized architecture for autonomous cooperative. Autonomous Underwater Vehicle, pp. 61–67 (1994)Google Scholar
  45. 45.
    Curcio, J., Leonard, J., Vaganay, J., Patrikalakis, A., Bahr, A., Battle, D., Schmidt, H., Grund, M.: Experiments in moving baseline navigation using autonomous surface craft. IEEE OCEANS, vol. 1, pp. 730–735 (2005)Google Scholar
  46. 46.
    Dias, P.S., Fraga, S.L., Gomes, R.M.F., Goncalves, G.M., Pereira, F.L., Pinto, J., Sousa, J.B.: Neptus—a framework to support multiple vehicle operation. IEEE OCEANS- Europe, vol. 2, pp. 963–968 (2005)Google Scholar
  47. 47.
    Khorrami, F., Krishnamurthy, P.: A hierarchical path planning and obstacle avoidance system for an autonomous underwater vehicle. American Control Conference, 2009. ACC ’09, pp. 3579–3584 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Robin R. Murphy
    • 1
  • Eric Steimle
    • 2
  • Michael Hall
    • 2
  • Michael Lindemuth
    • 3
  • David Trejo
    • 4
  • Stefan Hurlebaus
    • 1
  • Zenon Medina-Cetina
    • 1
  • Daryl Slocum
    • 5
  1. 1.Texas A&MCollege StationUSA
  2. 2.AEOS, LLCSt. PetersburgUSA
  3. 3.University of South FloridaSt. PetersburgUSA
  4. 4.Oregon State UniversityCorvallisUSA
  5. 5.YSI Inc.San DiegoUSA

Personalised recommendations