Advertisement

Journal of Intelligent & Robotic Systems

, Volume 61, Issue 1–4, pp 301–320 | Cite as

On-board and Ground Visual Pose Estimation Techniques for UAV Control

  • Carol MartínezEmail author
  • Iván F. Mondragón
  • Miguel A. Olivares-Méndez
  • Pascual Campoy
Article

Abstract

In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter’s position and using the extracted information to control the UAV.

Keywords

Computer vision Unmanned aerial vehicle Homography estimation 3D reconstruction Visual servoing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. Journal of Field Robotics 23(3–4), 185–199 (2006)CrossRefGoogle Scholar
  2. 2.
    Amidi, O., Kanade, T., Fujita, K.: A visual odometer for autonomous helicopter flight. In: Proceedings of the Fifth International Conference on Intelligent Autonomous Systems (IAS-5) (1998)Google Scholar
  3. 3.
    Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F., Mondragón, I.F., Martínez, C., Olivares, M.: Visual 3-d slam from uavs. J. Intell. Robot. Syst. 55(4–5), 299–321 (2009)CrossRefGoogle Scholar
  4. 4.
    McGee, T.G., Sengupta, R., Hedrick, K.: Obstacle detection for small autonomous aircraft using sky segmentation. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. pp. 4679–4684 (2005)Google Scholar
  5. 5.
    He, Z., Iyer, R.V., Chandler, P.R.: Vision-based uav flight control and obstacle avoidance. In: American Control Conference, 2006, 5 pp. (2006)Google Scholar
  6. 6.
    Carnie, R., Walker, R., Corke, P.: Image processing algorithms for uav “sense and avoid”. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2848–2853 (2006)Google Scholar
  7. 7.
    Conticelli, F., Allotta, B., Khosla, P.K.: Image-based visual servoing of nonholonomic mobile robots. In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999. vol. 4, pp. 3496–3501 (1999)Google Scholar
  8. 8.
    Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Trans. Robot.23(1), 87–100 (2007). doi: 10.1109/TRO.2006.886842 CrossRefGoogle Scholar
  9. 9.
    Siciliano, B., Khatib, O., (eds.): Springer Handbook of Robotics. Springer, Berlin (2008)zbMATHGoogle Scholar
  10. 10.
    Hutchinson, S., Hager, G.D., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)CrossRefGoogle Scholar
  11. 11.
    Chaumette, F., Hutchinson, S.: Visual servo control. I. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  12. 12.
    Simon, G., Fitzgibbon, A.W., Zisserman, A.: Markerless tracking using planar structures in the scene. In: Proceedings. IEEE and ACM International Symposium on Augmented Reality, 2000. (ISAR 2000), pp. 120–128 (2000)Google Scholar
  13. 13.
    Simon, G., Berger, M.-O.: Pose estimation for planar structures. IEEE Comput. Graph. Appl. 22(6), 46–53 (2002)CrossRefGoogle Scholar
  14. 14.
    Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’94), pp. 593–600 (1994)Google Scholar
  15. 15.
    Baker, S., Matthews, I.: Lucas–kanade 20 years on: a unifying framework: part 1. Technical Report CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2002)Google Scholar
  16. 16.
    Bouguet, J.-Y.: Pyramidal implementation of the lucas–kanade feature tracker. Technical report, Intel Corporation. Microprocessor Research Labs, Santa Clara, CA 95052 (1999)Google Scholar
  17. 17.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  18. 18.
    Sturm, P.: Algorithms for plane-based pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1017. Hilton Head Island, South Carolina (2000)Google Scholar
  19. 19.
    Martínez, C., Campoy, P., Mondragon, I., Olivares, M.: Trinocular Ground System to Control UAVs. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS, pp. 3361–3367 (2009)Google Scholar
  20. 20.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)CrossRefGoogle Scholar
  21. 21.
    Bradski, G.R.: Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. 2(2), 12–21 (1998)Google Scholar
  22. 22.
    Kragic, S.D., Christensen, H.I.: Survey on visual servoing for manipulation. Tech. Rep ISRN KTH/NA/P–02/01–SE, Centre for Autonomous Systems, Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm, Sweden, Fiskartorpsv. 15 A 100 44 Stockholm. January 2002. Available at www.nada.kth.se/~danik/VSpapers/report.pdf
  23. 23.
    Computer Vision Group. Universidad Politécnica de Madrid. CVG 2010. http://www.vision4uav.com
  24. 24.
    Campoy, P., Correa, J.F., Mondragón, I., Martínez, C., Olivares, M., Mejías, L., Artieda, J.: Computer vision onboard UAVs for civilian tasks. J Intell. Robot Syst. 54(1–3), 105–135 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Carol Martínez
    • 1
    Email author
  • Iván F. Mondragón
    • 1
  • Miguel A. Olivares-Méndez
    • 1
  • Pascual Campoy
    • 1
  1. 1.Computer Vision Group, Centro de Automática y Robótica (CAR)Universidad Politécnica de MadridMadridSpain

Personalised recommendations