Journal of Intelligent & Robotic Systems

, Volume 63, Issue 3–4, pp 361–397 | Cite as

Comparative Experimental Studies on Spatial Memory and Learning in Rats and Robots

  • Alejandra Barrera
  • Alejandra Cáceres
  • Alfredo Weitzenfeld
  • Victor Ramirez-Amaya
Article

Abstract

The study of behavioral and neurophysiological mechanisms involved in rat spatial cognition provides a basis for the development of computational models and robotic experimentation of goal-oriented learning tasks. These models and robotics architectures offer neurobiologists and neuroethologists alternative platforms to study, analyze and predict spatial cognition based behaviors. In this paper we present a comparative analysis of spatial cognition in rats and robots by contrasting similar goal-oriented tasks in a cyclical maze, where studies in rat spatial cognition are used to develop computational system-level models of hippocampus and striatum integrating kinesthetic and visual information to produce a cognitive map of the environment and drive robot experimentation. During training, Hebbian learning and reinforcement learning, in the form of Actor-Critic architecture, enable robots to learn the optimal route leading to a goal from a designated fixed location in the maze. During testing, robots exploit maximum expectations of reward stored within the previously acquired cognitive map to reach the goal from different starting positions. A detailed discussion of comparative experiments in rats and robots is presented contrasting learning latency while characterizing behavioral procedures during navigation such as errors associated with the selection of a non-optimal route, body rotations, normalized length of the traveled path, and hesitations. Additionally, we present results from evaluating neural activity in rats through detection of the immediate early gene Arc to verify the engagement of hippocampus and striatum in information processing while solving the cyclical maze task, such as robots use our corresponding models of those neural structures.

Keywords

Hippocampus Striatum IEG Arc expression Spatial learning Cognitive map Place recognition Biorobotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, W.A.: Principles of Animal Cognition, pp. 201–230. McGraw Hill, USA (1998)Google Scholar
  2. 2.
    Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley-Interscience, New York (1949)Google Scholar
  3. 3.
    Barto, A.G.: Adaptive critics and the basal ganglia. In: Houk, J.C., Davis, J.L., Beiser, D. (eds.) Models of Information Processing in the Basal Ganglia, pp. 215–232. MIT Press, Cambridge (1995)Google Scholar
  4. 4.
    O’Keefe, J.: Spatial memory within and without the hippocampal system. In: Seifert, W. (ed.) Neurobiology of the Hippocampus, pp. 375–403. Academic Press, New York (1983)Google Scholar
  5. 5.
    Barrera, A., Weitzenfeld, A.: Biologically-inspired robot spatial cognition based on rat neurophysiological studies. Auton. Robots, Springer 25(1–2), 147–169 (2008)CrossRefGoogle Scholar
  6. 6.
    Morris, R.G.M.: Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981)CrossRefGoogle Scholar
  7. 7.
    Barrera, A., Weitzenfeld, A.: Rat-inspired model of robot target learning and place recognition. In: Proceedings of the 15th Mediterranean Conference on Control and Automation—MED. Athens, Greece (2007)Google Scholar
  8. 8.
    Arkin, R.C.: Behavioral Based Robotics. MIT Press (1998)Google Scholar
  9. 9.
    Webb, B.: What does robotics offer animal behaviour? Anim. Behav. 60, 545–558 (2000)CrossRefGoogle Scholar
  10. 10.
    Weitzenfeld, A.: A prey catching and predator avoidance neural-schema architecture for single and multiple robots. J. Intell. Robot. Syst., Springer 51(2), 203–233 (2008)CrossRefGoogle Scholar
  11. 11.
    Weitzenfeld, A.: From schemas to neural networks: a multi-level modeling approach to biologically-inspired autonomous robotic systems. J. Robot. Auton. Syst. 56(2), 177–197 (2008)CrossRefGoogle Scholar
  12. 12.
    O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press (1978)Google Scholar
  13. 13.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 34(1), 171–175 (1971)CrossRefGoogle Scholar
  14. 14.
    Tolman, E.: Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)CrossRefGoogle Scholar
  15. 15.
    McNaughton, B.L., Knierim, J.J., Wilson, M.A.: Vector encoding and the vestibular foundations of spatial cognition. In: Gazzaniga, M. (ed.) The Cognitive Neurosciences, pp. 585–595. MIT Press, Boston (1994)Google Scholar
  16. 16.
    O’Keefe, J., Conway, D.H.: Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978)Google Scholar
  17. 17.
    Quirk, G.J., Muller, R.U., Kubie, J.L.: The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10(6), 2008–2017 (1990)Google Scholar
  18. 18.
    Jeffery, K.J., O’Keefe, J.M.: Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161 (1999)CrossRefGoogle Scholar
  19. 19.
    Poucet, B.: Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. Psychol. Rev. 100(2), 163–182 (1993)CrossRefGoogle Scholar
  20. 20.
    Moser, E.I., Kropff, E., Moser, M.-B.: Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)CrossRefGoogle Scholar
  21. 21.
    Risold, P., Thompson, R., Swanson, L.: The structural organization of connections between hypothalamus and cerebral cortex. Brains Res. Rev. 24(2–3), 197–254 (1997)CrossRefGoogle Scholar
  22. 22.
    Kelley, A.: Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27(8), 765–776 (2004)CrossRefGoogle Scholar
  23. 23.
    Schultz, W., Tremblay, L., Hollerman, J.: Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 37(4–5), 421–429 (1998)CrossRefGoogle Scholar
  24. 24.
    Schultz, W., Tremblay, L., Hollerman, J.: Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10(3), 272–283 (2000)CrossRefGoogle Scholar
  25. 25.
    Houk, J.C., Adams, J.L., Barto, A.G.: A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Houk, J.C., Davis, J.L., Beiser, D.G. (eds.) Models of Information Processing in the Basal Ganglia, pp. 249–270. MIT Press, Cambridge (1995)Google Scholar
  26. 26.
    Collett, T.S., Graham, P.: Animal navigation: path integration, visual landmarks and cognitive maps. Curr. Biol. 14(12), R475–7 (2004)CrossRefGoogle Scholar
  27. 27.
    Hartley, T., Burgess, N.: Complementary memory systems: competition, cooperation and compensation. Trends Neurosci. 28(4), 169–170 (2005)CrossRefGoogle Scholar
  28. 28.
    Lanahan, A., Worley, P.: Immediate-early genes and synaptic function. Neurobiol. Learn. Mem. 70(1–2), 37–43 (1998)CrossRefGoogle Scholar
  29. 29.
    Guzowski, J.F., McNaughton, B.L., Barnes, C.A., Worley, P.F.: Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2(12), 1120–1124 (1999)CrossRefGoogle Scholar
  30. 30.
    Ramirez-Amaya, V., Vazdarjanova, A., Mikhael, D., Rosi, S., Worley, P.F., Barnes, C.A.: Spatial exploration-induced arc mRNA and protein expression: evidence for selective, network-specific reactivation. J. Neurosci. 25, 1761–1768 (2005)CrossRefGoogle Scholar
  31. 31.
    Vazdarjanova, A., Ramirez-Amaya, V., Insel, N., Plummer, T.K., Rosi, S., Chowdhury, S., Mikhael, D., Worley, P.F., Guzowski, J.F., Barnes, C.A.: Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 498(3), 317–329 (2006)CrossRefGoogle Scholar
  32. 32.
    Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Netw. 7(6–7), 1065–1081 (1994)MATHCrossRefGoogle Scholar
  33. 33.
    Brown, M.A., Sharp, P.E.: Simulation of spatial learning in the Morris Water Maze by a neural network model of the hippocampal formation and nucleus accumbens. Hippocampus 5, 171–188 (1995)CrossRefGoogle Scholar
  34. 34.
    Redish, A., Touretzky, D.: Cognitive maps beyond the hippocampus. Hippocampus 7(1), 15–35 (1997)CrossRefGoogle Scholar
  35. 35.
    Guazzelli, A., Corbacho, F.J., Bota, M., Arbib, M.A.: Affordances, motivation, and the world graph theory. Adapt. Behav. 6(3–4), 435–471 (1998)CrossRefGoogle Scholar
  36. 36.
    Arleo, A., Gerstner, W.: Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol. Cybern. 83, 287–299 (2000)CrossRefGoogle Scholar
  37. 37.
    Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 15–28 (2002)MATHCrossRefGoogle Scholar
  38. 38.
    Filliat, D., Meyer, J.-A.: Global localization and topological map learning for robot navigation. In: Hallam et al. (eds.) From Animals to Animats 7 Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior, pp 131–140. The MIT Press (2002)Google Scholar
  39. 39.
    Arleo, A., Smeraldi, F., Gerstner, W.: Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Trans. Neural Netw. 15(3), 639–652 (2004)CrossRefGoogle Scholar
  40. 40.
    Milford, M., Wyeth, G.: Spatial mapping and map exploitation: a bio-inspired engineering perspective. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) Spatial Information Theory, pp. 203–221. Springer-Verlag, Heidelberg (2007)CrossRefGoogle Scholar
  41. 41.
    Parron, C., Save, E.: Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159(3), 349–359 (2004)CrossRefGoogle Scholar
  42. 42.
    Cho, J., Sharp, P.: Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 115(1), 3–25 (2001)CrossRefGoogle Scholar
  43. 43.
    McNaughton, B., Mizumori, S., Barnes, C., Leonard, B., Marquis, M., Green, E.: Cortical representation of motion during unrestrained spatial navigation in the rat. Cereb. Cortex 4, 27–39 (1994)CrossRefGoogle Scholar
  44. 44.
    Granon, S., Poucet, B.: Involvement of the rat prefrontal cortex in cognitive functions: a central role for the prelimbic area. Psychobiology 28(2), 229–237 (2000)Google Scholar
  45. 45.
    Foster, D.J., Morris, R.G.M., Dayan, P.: A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000)CrossRefGoogle Scholar
  46. 46.
    Hull, C.L.: The goal gradient hypothesis and maze learning. Psychol. Rev. 39, 25–43 (1932)CrossRefGoogle Scholar
  47. 47.
    Weitzenfeld, A., Arbib, M., Alexander, A.: The neural simulation language. MIT Press, Cambridge (2002)Google Scholar
  48. 48.
    Webb, B.: Can robots make good models of biological behaviour? Behav. Brain Sci. 24, 1033–1050 (2001)Google Scholar
  49. 49.
    Ranck, J.B., Jr.: Head-direction cells in the deep layers of dorsal presubiculum in freely moving rats. Soc. Neurosci. Abstr. 10, 599 (1984)Google Scholar
  50. 50.
    Leutgeb, S., Leutgeb, J.K.: Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learn. Mem. 14(11), 745–757 (2007)CrossRefGoogle Scholar
  51. 51.
    Ramirez-Amaya, V., Marrone, D.F., Gage, F.H., Worley, P.F., Barnes, C.A.: Integration of new neurons into functional neural networks. J. Neurosci. 26(47), 12237–12241 (2006)CrossRefGoogle Scholar
  52. 52.
    Guzowski, J.F., Knierim, J.J., Moser, E.I.: Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4), 581–584 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alejandra Barrera
    • 1
  • Alejandra Cáceres
    • 2
  • Alfredo Weitzenfeld
    • 1
  • Victor Ramirez-Amaya
    • 2
  1. 1.Computer Engineering Department–Robotics and Biorobotics LaboratoriesInstituto Tecnológico Autónomo de México (ITAM)MéxicoMéxico
  2. 2.Neurobiology Institute, Plastic Neural Networks LaboratoryUniversidad Nacional Autónoma de México (UNAM)QuerétaroMéxico

Personalised recommendations