A Sensor Placement Algorithm for a Mobile Robot Inspection Planning

Article

Abstract

In this paper, we address the inspection planning problem to “see” the whole area of the given workspace by a mobile robot. The problem is decoupled into the sensor placement problem and the multi-goal path planning problem to visit found sensing locations. However the decoupled approach provides a feasible solution, its overall quality can be poor, because the sub-problems are solved independently. We propose a new randomized approach that considers the path planning problem during solution process of the sensor placement problem. The proposed algorithm is based on a guiding of the randomization process according to prior knowledge about the environment. The algorithm is compared with two algorithms already used in the inspection planning. Performance of the algorithms is evaluated in several real environments and for a set of visibility ranges. The proposed algorithm provides better solutions in both evaluated criterions: a number of sensing locations and a length of the inspection path.

Keywords

Sensor placement Mobile robotics Inspection path planning Art gallery problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chin, W.-P., Ntafos, S.: Optimum watchman routes. In: SCG ’86: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 24–33, Yorktown Heights, New York. ACM (1986)Google Scholar
  2. 2.
    Packer, E.: Robust geometric computing and optimal visibility coverage. PhD thesis, Stony Brook University, New York (2008)Google Scholar
  3. 3.
    Danner, T., Kavraki, L.E.: Randomized planning for short inspection paths. In: Proceedings of The IEEE International Conference on Robotics and Automation (ICRA), pp. 971–976, San Francisco, CA. IEEE (2000)Google Scholar
  4. 4.
    Culberson, J.C., Reckhow, R.A.: Covering polygons is hard. J. Algorithms 17(1), 2–44 (1994)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Tan, X., Hirata, T.: Finding shortest safari routes in simple polygons. Inf. Process. Lett. 87(4), 179–186 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Ntafos, S.C.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Li, F., Klette, R.: An approximate algorithm for solving the watchman route problem. In: RobVis, pp. 189–206 (2008)Google Scholar
  8. 8.
    Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2004)MATHGoogle Scholar
  9. 9.
    González-Baños, H.H., Hsu, D., Latombe, J.-C.: Motion planning: recent developments. In: Ge, S.S., Lewis, F.L. (eds.) Autonomous Mobile Robots: Sensing, Control, Decision-Making and Applications, Chapter 10. CRC (2006)Google Scholar
  10. 10.
    Wang, P.: View planning with combined view and travel cost. PhD thesis, Simon Fraser University (2007)Google Scholar
  11. 11.
    González-Baños, H.H., Latombe, J.-C.: Planning robot motions for range-image acquisition and automatic 3d model construction. In: AAAI Fall Symposium (1998)Google Scholar
  12. 12.
    Hörster, E., Lienhart, R.: On the optimal placement of multiple visual sensors. In: VSSN ’06: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, pp. 111–120, New York, NY. ACM (2006)Google Scholar
  13. 13.
    Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3), 156–169 (2006)CrossRefGoogle Scholar
  14. 14.
    Osais, Y.E., St-Hilaire, M., Yu, F.R.: Directional sensor placement with optimal sensing range, field of view and orientation. Mob. Netw. Appl. 15(2), 216–225 (2008)CrossRefGoogle Scholar
  15. 15.
    Kazazakis, G.D., Argyros, A.A.: Fast positioning of limited visibility guards for the inspection of 2d workspaces. In: Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS2002), Lausanne (2002)Google Scholar
  16. 16.
    Scott, W.R., Roth, G., Rivest, J.-F.: View planning for automated three-dimensional object reconstruction and inspection. ACM Comput. Surv. 35(1), 64–96 (2003)CrossRefGoogle Scholar
  17. 17.
    Blaer, P.S., Allen, P.K.: Data acquisition and view planning for 3-d modeling tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), pp. 417–422, 29 October–2 November 2007Google Scholar
  18. 18.
    Nüchter, A., Surmann, H., Hertzberg, J.: Planning robot motion for 3d digitalization of indoor environments. In: Proceedings of the 11th International Conference on Advanced Robotics (ICAR), pp. 222–227 (2003)Google Scholar
  19. 19.
    González-Baños, H.H., Latombe, J.-C.: Navigation strategies for exploring indoor environments. Int. J. Rob. Res. 21(10–11), 829–848 (2002)CrossRefGoogle Scholar
  20. 20.
    González-Banos, H.H.: A randomized art-gallery algorithm for sensor placement. In: SCG ’01: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 232–240. ACM, New York (2001)CrossRefGoogle Scholar
  21. 21.
    Lavalle, S.M.: Planning Algorithms. Cambridge University Press (2006)Google Scholar
  22. 22.
    Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: SCG ’88: Proceedings of the Fourth Annual Symposium on Computational Geometry, pp. 164–171. ACM, New York (1988)CrossRefGoogle Scholar
  23. 23.
    Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl. 1(1), 51–64 (1991)MathSciNetMATHGoogle Scholar
  24. 24.
    Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Underst. 73(3), 441–454 (1999)CrossRefGoogle Scholar
  25. 25.
    Wolter, D., Richter, K.-F.: Schematized aspect maps for robot guidance. In: Proceedings of the ECAI Workshop Cognitive Robotics (CogRob) (2004)Google Scholar
  26. 26.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: CONCORDE TSP Solver. http://www.tsp.gatech.edu/concorde.html (2003). Accessed 23 July 2010
  27. 27.
    Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chen, Z., Birchfield, S.T.: Qualitative vision-based path following. IEEE Transactions on Robotics 25(3), 749–754 (2009)CrossRefGoogle Scholar
  29. 29.
    Sohn, H.J., Kim, B.K.: Vecslam: an efficient vector-based slam algorithm for indoor environments. J. Intell. Robot. Syst. 56(3), 301–318 (2009)MATHCrossRefGoogle Scholar
  30. 30.
    CGAL—Computational Geometry Algorithms Library. http://www.cgal.org (2004). Accessed 23 July 2010
  31. 31.
    JTS Topology Suite. http://www.vividsolutions.com/jts/jtshome.htm. Version 1.5 (2004). Accessed 23 July 2010
  32. 32.
    Diablo Caffe JDK 1.6.0-7. http://www.freebsdfoundation.org/downloads/java.shtml (2009). Accessed 23 July 2010
  33. 33.
    Wein, R., van den Berg, J.P., Halperin, D.: The visibility–voronoi complex and its applications. In: SCG ’05: Proceedings of the Twenty-First Annual Symposium on Computational Geometry, pp. 63–72. ACM, New York (2005)CrossRefGoogle Scholar
  34. 34.
    Huang, W.H., Beevers, K.R.: Complete Topological Mapping with Sparse Sensing. Technical Report 6, Rensselaer Polytechnic Institute Department of Computer Science (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations