Journal of Intelligent & Robotic Systems

, Volume 62, Issue 1, pp 29–58 | Cite as

Semi-globally Exponential Tracking Observer/Controller for Robots with Joint Hysteresis and Without Velocity Measurement

  • Srinivasulu Malagari
  • Brian J. DriessenEmail author


In this work, we consider a multiple degree of freedom robotic plant with joint hysteresis and without velocity measurement. We show, by construction, how a semi-globally exponential hysteresis observer/controller that assumes velocity measurement, a number of which we point out from the literature, can be combined/modified with a velocity observer to yield a combined semi-globally exponential tracking observer/controller. The resulting observer/controller estimates both the hysteresis state and the joint velocity. We prove that the combined estimation error and tracking error converges to zero semi-globally exponentially. One deemed contribution as compared to previous work for this same type of plant is that the usual requirement of velocity measurement has been removed; another is the proved semi-globally exponential result.


Hysteresis observer Hysteresis Hysteretic friction Bouc–Wen Semi-globally exponential tracking Robot Velocity observer Semi-global exponential Actuators Drives Nonlinear controls SGES LuGre 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berghuis, H., Nijmeijer, H.: Observer design in the tracking control problem for robots. In: Proceedings of the 2nd IFAC Symposium on Nonlinear Control Systems Design, pp. 197–202, 24–26 June, Bordeaux, France (1992)Google Scholar
  2. 2.
    Berghuis, H., Nijmeijer, H.: A passivity approach to controller–observer design for robots. IEEE Trans. Robot. Autom. 9, 740–754 (1993)CrossRefGoogle Scholar
  3. 3.
    Canudas de Wit, C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40(3), 419–425 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, C., Lin, K.: Observer-based contouring design of a biaxial stage system subject to friction. IEEE Trans. Control Syst. Technol. 16(2), 322–329 (2008)CrossRefGoogle Scholar
  5. 5.
    Craig, J.J.: Introduction to Robotics, 2nd edn. Addison-Wesley Publishing Company, Reading, Massachusetts (1989)zbMATHGoogle Scholar
  6. 6.
    de Queiroz, M.S., Dawson, D., Burg, T.: Position/force control of robot manipulators without velocity/force measurements. Int. J. Robot. Autom. 12(1), 1–14 (1997)Google Scholar
  7. 7.
    Dominquez, A., Sedaghati, R., Stiharu, I.: A new dynamic hysteresis model for magnetorheological dampers. Smart Mater. Struc. 15, 1179–1189 (2006)CrossRefGoogle Scholar
  8. 8.
    Driessen, B.J., Duggirala, V.M.: Globally asymptotic and locally exponential tracking observer/controller for a relatively large class of systems with hysteresis. J. Intell. Robot. Syst. 50(2), 207–215 (2007)CrossRefGoogle Scholar
  9. 9.
    Driessen, B.J., Kondreddi, S.: Tracking observer/controller for a relatively large class of systems with hysteresis and without velocity measurement. Syst. Control. Lett. 58(1), 26–30 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Heine, C.P.: Simulated Response of Degrading Hysteretic Joints with Slack Behavior. Ph.D. thesis, Vanderbilt University (2001)Google Scholar
  11. 11.
    Jiang, B., Staroswiecki, M.: Fault diagnosis for nonlinear uncertain systems using robust/sliding mode observers. Control Intell. Syst. 33(3), 151–157 (2005)zbMATHGoogle Scholar
  12. 12.
    Kawabe, H., Yoshida, K., Iida, T.: Vibration control of a pendulum system by a VSS sliding mode control technique. Control Intell. Syst. 23(1), 29–36 (2000)Google Scholar
  13. 13.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)zbMATHGoogle Scholar
  14. 14.
    Lim, Y.L., Dawson, D.M., Anderson, K.: Re-examining the Nicosia–Tomei robot observer–controller from a backstepping perspective. IEEE Trans. Control Syst. Technol. 4(3), 304–310 (1996)CrossRefGoogle Scholar
  15. 15.
    Lin, C., Yang, S.: Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics 16(7), 417–426 (2006)CrossRefGoogle Scholar
  16. 16.
    Lin, F., Shieh, H., Huang, P., Teng, L.: Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(9), 1649–1661 (1996)Google Scholar
  17. 17.
    Lim, S.Y., Hu, J., Dawson, D.M.: An output feedback controller for trajectory tracking of RLED robots using an observed backstepping approach. In: Proceedings of the Third IEEE Conference on Control Applications, vol. 1, pp. 71–76 (1994)Google Scholar
  18. 18.
    Lim, S.Y., Hu, J., Dawson, D.M.: Output feedback controller for trajectory tracking of RLED robots using an observed backstepping approach. Int. J. Robot. Autom. 11(4), 149–160 (1996)Google Scholar
  19. 19.
    Lim, S.Y., Hu, J., Dawson, D.M., de Quieroz, M.: A partial state feedback controller for trajectory tracking of rigid-link flexible-joint robots using an observed backstepping approach. J. Robot. Syst. 12(12), 727–746 (1995)zbMATHGoogle Scholar
  20. 20.
    Lin, L.C., Li, H.C.: Discrete-time adaptive fuzzy control with hysteresis observer for a three-axis flexural stage. J. Chin. Inst. Eng. 31(6), 894–911 (2008)Google Scholar
  21. 21.
    Loria, A., Nijmeijer, H.: Bounded output feedback tracking of fully actuated Euler–Lagrange systems. Syst. Control. Lett. 33(3), 151–161 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Malagari, S., Driessen, B.J.: Globally exponential continuous controller/observer for tracking in robots with hysteretic friction. Robotica (2009). doi: 10.1017/S0263574709990452 Google Scholar
  23. 23.
    Nicosia, S., Tomei, P.: Robot control by using only position measurements. IEEE Trans. Automat. Contr. 35(9), 1058–1061 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Panteley, E., Ortega, R., Gafvert, M.: An adaptive friction compensator for global tracking in robot manipulators. Syst. Control. Lett. 33, 307–313 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Peng, C., Chen, C.: Biaxial contouring control with friction dynamics using a contour index approach. Int. J. Mach. Tools Manuf. 47, 1542–1555 (2007)CrossRefGoogle Scholar
  26. 26.
    Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)zbMATHGoogle Scholar
  27. 27.
    Teel, A., Praly, L.: Global stabilizability and observability imply semi-global stabilizability by output feedback. Syst. Control. Lett. 22(5), 313–325 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Vargas, F., De Pieri, E., Castelan, E.: Identification and friction compensation for an industrial robot using two degrees of freedom controllers. In: 8th International Conference on Control, Automation, Robotics, and Vision, vol. 2(2), pp. 1146–1151 (2004)Google Scholar
  29. 29.
    Zhang, F., Dawson, D.M., de Queiroz, M.S., Dixon, W.E.: Global adaptive output tracking control of robot manipulators. IEEE Trans. Automat. Contr. 45(6), 1203–1208 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Wichita State UniversityWichitaUSA

Personalised recommendations