Journal of Intelligent and Robotic Systems

, Volume 59, Issue 1, pp 87–100

Single Input Fuzzy Logic Controller for Unmanned Underwater Vehicle

  • Kashif Ishaque
  • S. S. Abdullah
  • S. M. Ayob
  • Z. Salam
Article

Abstract

This paper describes a control scheme that provides an efficient way to design a Fuzzy Logic Controller (FLC) for the unmanned underwater vehicle (UUV). The proposed method, known as the Single Input Fuzzy Logic Controller (SIFLC), reduces the conventional two-input FLC (CFLC) to a single input single output (SISO) controller. The SIFLC offers significant reduction in rule inferences and simplify the tuning of control parameters. Practically it can be easily implemented by a look-up table using a low cost microprocessor due its piecewise linear control surface. To verify its effectiveness, the control algorithm is simulated using the Marine Systems Simulator (MSS) on the Matlab/Simulink® platform. The result indicates that both the SIFLC and CFLC give identical response to the same input sets. However SIFLC requires very minimum tuning effort and its execution time is in the orders of two magnitudes less than CFLC.

Keywords

Fuzzy logic controller Signed distance method Single input fuzzy logic control Unmanned underwater vehicle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goheen, K.R., Jefferys, E.R.: The application of alternative modeling techniques to ROV dynamics. IEEE Int. Conf. Robot. Autom. 2, 1302–1309 (1990)CrossRefGoogle Scholar
  2. 2.
    Humphreys, D.E., Watkinson, K.W.: Hydrodynamic Stability and Control Analyses of the UNH-EAVE Autonomous Underwater Vehicle. Marine Systems Lab. Rep., Univ. of New Hamp., Durham (1982)Google Scholar
  3. 3.
    Abkowitz, M.A.: Stability and Motion Control of Ocean Vehicles. MIT, Cambridge (1969)Google Scholar
  4. 4.
    Lewis, D.J., Lipscombe, J.M., Thomasson, P.G.: The simulation of remotely operated underwater vehicles. In: Proc. ROV ’84, MTS (1984)Google Scholar
  5. 5.
    Yoerger, D.R., Slotine, J.J.E.: Robust trajectory control of underwater vehicles. IEEE J. Oceanic Eng. 10, 462–470 (1985)CrossRefGoogle Scholar
  6. 6.
    Russel, G.T., Bugge, J.: Adaptive estimator for the automatic guidance of an unmanned submersible. Proc. Inst. Electr. Eng. 128(pt D), 223–226 (1981)Google Scholar
  7. 7.
    Yuh, J.: Modeling and control of underwater vehicles. IEEE Trans. Syst. Man Cybern. 20, 1475–1483 (1990)CrossRefGoogle Scholar
  8. 8.
    Goheen, K.R., Jefferys, E.R., Broome, D.R.: Robust self designing controllers for underwater vehicles. J. Offshore Mech. Arct. Eng. 109, 170–178 (1987)CrossRefGoogle Scholar
  9. 9.
    Yoerger, D.R., Cooke, J.G., Slotine, J.J.E.: The influence of thruster dynamics on underwater vehicle behavior and their incorporation in design. IEEE J. Oceanic Eng. 15, 167–179 (1991)CrossRefGoogle Scholar
  10. 10.
    Healey, J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Oceanic Eng. 18(3) (1993)Google Scholar
  11. 11.
    Fossen, T.I., Sagatun, S.: Adaptive control of nonlinear systems a case study of underwater robotic systems. J. Robot. Syst. 8, 393412 (1991)CrossRefGoogle Scholar
  12. 12.
    Yuh, J.: A neural net controller for underwater robotic vehicles. IEEE J. Oceanic Eng. 15(3), 161–166 (1990)CrossRefGoogle Scholar
  13. 13.
    Wang, J.S., Lee, C.S.G., Yuh, J.: Self-adaptive neuro-fuzzy systems with fast parameter learning for autonomous underwater vehicle control. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3861–3866. San Francisco, USA (2000)Google Scholar
  14. 14.
    Kim, T.W., Yuh, J.: A novel neuro-fuzzy controller for autonomous underwater vehicles. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2350–2355. Seoul, Korea (2001)Google Scholar
  15. 15.
    Ishiii, K., Fujii, T., Ura, T.: Neural network system for on-line controller adaptation and its application to underwater robot. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 756–761 (1998)Google Scholar
  16. 16.
    Suh, I.H., Kim, T.W.: Fuzzy membership function based neural networks with applications to the visual servoing of robot manipulators. IEEE Trans. Fuzzy Syst. 2(3), 203–220 (1994)CrossRefGoogle Scholar
  17. 17.
    Suh, I.H., Kim, T.W.: A visual servoing algorithm using fuzzy logics and fuzzy-neural networks. Mechatronics 10(1), 1–18 (2000)CrossRefGoogle Scholar
  18. 18.
    DeBitetto, P.A.: Fuzzy logic for depth control of unmanned undersea vehicles. In: Proc. of AUV Symposium, pp. 233–241 (1994)Google Scholar
  19. 19.
    Kato, N.:Applications of fuzzy algorithm to guidance and control of underwater vehicle. In: Yuh, J. (ed.) Underwater Robotic Vehicles: Design and Control. TSI, Albuquerque (1995)Google Scholar
  20. 20.
    Shaw, I.S.: Fuzzy Control of Industrial Systems—Theory and Applications. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  21. 21.
    Liu, K., Lewis, F.L.: Some issues about fuzzy logic control. In: Proc. of the 32nd Conference on Decision and Control, pp. 1743–1748 (1993)Google Scholar
  22. 22.
    Choi, B.J., Kwak, S.W., Kim, B.K.: Design and stability analysis of single-input fuzzy logic controller. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 30(2), 303–309 (2000)CrossRefGoogle Scholar
  23. 23.
    Ayob, S.M., Azli, N.A., Salam, Z.: PWM DC-AC converter regulation using a multi-loop single input fuzzy PI controller. J. Power Electron. 9(1), 124–131 (2009)Google Scholar
  24. 24.
    Society of Naval Architects and Marine Engineers (SNAME): Nomenclature for treating the motion of a submerged body through a fluid. Tech. Res. Bull. 1–5 (1950)Google Scholar
  25. 25.
    Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)Google Scholar
  26. 26.
    Fossen, T.I., Perez, T.: Marine Systems Simulator (MSS). http://www.marinecontrol.org (2004)
  27. 27.
    Perez, T., Smogeli, N., Fossen, T.I., Sorensen, A.J.: An overview of the marine systems simulator (MSS): a Simulink toolbox for marine control systems. Model. Identif. Control 27, 259–275 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kashif Ishaque
    • 1
  • S. S. Abdullah
    • 1
  • S. M. Ayob
    • 1
  • Z. Salam
    • 1
  1. 1.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations