Experimental Comparison Research on Active Vibration Control for Flexible Piezoelectric Manipulator Using Fuzzy Controller

  • Jing-jun Wei
  • Zhi-cheng QiuEmail author
  • Jian-da Han
  • Yue-chao Wang


Space manipulators are flexible structures. Vibration problem will be unavoidable due to motion or external disturbance excitation. Model based control methods will not maintain the required accuracy because of the existence of nonlinear factors and parameter uncertainties. To solve these problems, fuzzy logic control laws with different membership function groups are adopted to suppress vibrations of a flexible smart manipulator using collocated piezoelectric sensor/actuator pair. Also, dual-mode controllers combining fuzzy logic and proportional integral control are designed, for suppressing the lower amplitude vibration near the equilibrium point significantly. Experimental comparison research is conducted, using fuzzy control algorithms and the dual-mode controllers with different membership functions. The experimental results show that the adopted fuzzy control algorithms can substantially suppress the larger amplitude vibration; and the dual-mode controllers can also damp out the lower amplitude vibration significantly. The experimental results demonstrate that the proposed fuzzy controllers and dual-mode controllers can suppress vibration effectively, and the optimal placement is feasible.


Flexible manipulator Active vibration control Fuzzy logic Smart structure Experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Worden, K., Bullough, W.A., Haywood, J.: Smart Technologies. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  2. 2.
    Sun, D., Mills, J.K., Shan, J.J., Tso, S.K.: A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14, 381–401 (2004)CrossRefGoogle Scholar
  3. 3.
    Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8, 605–611 (1985)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration. Academic, London (1996)Google Scholar
  5. 5.
    Fanson, J.L., Caughey, T.K.: Positive position feedback control for large space structures. AIAA J. 28(4), 717–724 (1990)CrossRefGoogle Scholar
  6. 6.
    Qiu, Z.C., Zhang, X.M., Wu, H.X., Zhang, H.H.: Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. J. Sound Vib. 301, 521–543 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Qiu, Z.C., Wu, H.X., Zhang, D.: Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope. Thin-Walled Struct. 47(8–9), 836–846 (2009)CrossRefGoogle Scholar
  8. 8.
    Dong, X.J., Meng, G., Peng, J.C.: Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study. J. Sound Vib. 297, 680–693 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Choi, S.B., Sohn, J.W.: Chattering alleviation in vibration control of smart beam structures using piezofilm actuators: experimental verification. J. Sound Vib. 294(3), 640–649 (2006)CrossRefGoogle Scholar
  10. 10.
    Qiu, Z.C., Han, J.D., et al.: Active vibration control of a flexible beam using a non-collocated acceleration sensor an piezoelectric patch actuator. J. Sound Vib. 326(3–5), 438–455 (2009)CrossRefGoogle Scholar
  11. 11.
    Qiu, Z.C., Wu, H.X., Ye, C.D.: Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate. Aerosp. Sci. Technol. 13(6), 277–290 (2009)CrossRefGoogle Scholar
  12. 12.
    Caracciolo, R., Richiedei, D., Trevisani, A., et al.: Robust mixed-norm position and vibration control of flexible link mechanisms. Mechatronics 15(7), 767–791 (2005)CrossRefGoogle Scholar
  13. 13.
    Li, Z.J., Ge, S.S., Ming, A.G.: Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators. IEEE Trans. Syst. Man Cybern., Part B 37(3), 607–616 (2007)CrossRefGoogle Scholar
  14. 14.
    Li, Z.J., Ge, S.S., Adams, M., Wijesoma, W.S.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776–784 (2008)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kwak, M.K., Sciulli, D.: Fuzzy-logic based vibration suppression control experiments on active structures. J. Sound Vib. 191(1), 15–28 (1996)CrossRefGoogle Scholar
  16. 16.
    Kim, S., Clark, W.W.: Fuzzy logic semi-active vibration control. Adaptive Structures and Materials Systems-1999, ASME 1999, AD-Vol.59/MD-Vol.87, pp. 367–372.Google Scholar
  17. 17.
    Lin, J., Liu, W.Z.: Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J. Sound Vib. 296, 567–582 (2006)CrossRefGoogle Scholar
  18. 18.
    Qu, W.Z., Sun, J., Qiu, Y.: Active control of vibration using a fuzzy control method. J. Sound Vib. 275, 917–930 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Lin, J.: An active-passive absorber by using hierarchical fuzzy methodology for vibration control. J. Sound Vib. 304, 752–768 (2007)CrossRefGoogle Scholar
  20. 20.
    Teng, T.L., Peng, C.P., Chuang, C.: A study on the application of fuzzy theory to structural active control. Comput. Methods Appl. Mech. Eng. 189, 439–448 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Gawronski, W.K., Lim, K.B.: Balanced actuator and sensor placement for flexible structures. Int. J. Control 65(1), 131–145 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gawronski, W.K.: Dynamics and Control of Structures: A Modal Approach. Springer, New York (1998)zbMATHGoogle Scholar
  23. 23.
    Yang, Y., Jin, Z.L., Soh, C.: Integrated optimal design of vibration control system for smart beams using genetic algorithms. J. Sound Vib. 282, 1293–1307 (2005)CrossRefGoogle Scholar
  24. 24.
    Liu, P., Rao, V.S.: Active control of smart structures with optimal actuator and sensor locations. In: Proceedings of SPIE Smart Structures and Materials: Modeling, Signal Processing and Control, vol. 4693, pp. 1–12 (2002)Google Scholar
  25. 25.
    Li, Y., Onoda, J., Minesugi, K.: Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression. Acta Astronaut. 50(6), 335–341 (2002)CrossRefGoogle Scholar
  26. 26.
    Devasia, S., Meressi, T., Paden, B.: Piezoelectric actuator design for vibration suppression: placement and sizing. J. Guid. Control Dyn. 16(5), 859–864 (1993)CrossRefGoogle Scholar
  27. 27.
    Leleu, S., Hisham, A.K., Bonnassieux, Y.: Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Trans. Instrum. Meas. 50(6), 1577–1582 (2001)CrossRefGoogle Scholar
  28. 28.
    Dhuri, K.D., Seshu, P.: Multi-objective optimization of piezo actuator placement and sizing using genetic algorithm. J. Sound Vib. 323, 495–514 (2009)CrossRefGoogle Scholar
  29. 29.
    Liu, J.K.: Intelligent Control. Publishing House of Electronics Industry, Beijing (2005, in Chinese)Google Scholar
  30. 30.
    Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, New Jersey (1994)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jing-jun Wei
    • 1
  • Zhi-cheng Qiu
    • 1
    Email author
  • Jian-da Han
    • 2
  • Yue-chao Wang
    • 2
  1. 1.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations