Advertisement

Robotic Motion Using Harmonic Functions and Finite Elements

  • Santiago GarridoEmail author
  • Luis Moreno
  • Dolores Blanco
  • Fernando Martín Monar
Article

Abstract

The harmonic functions have proved to be a powerful technique for motion planning in a known environment. They have two important properties: given an initial point and an objective in a connected domain, a unique path exists between those points. This path is the maximum gradient path of the harmonic function that begins in the initial point and ends in the goal point. The second property is that the harmonic function cannot have local minima in the interior of the domain (the objective point is considered as a border). This paper proposes a new method to solve Laplace’s equation. The harmonic function solution with mixed boundary conditions provides paths that verify the smoothness and safety considerations required for mobile robot path planning. The proposed approach uses the Finite Elements Method to solve Laplace’s equation, and this allows us to deal with complicated shapes of obstacles and walls. Mixed boundary conditions are applied to the harmonic function to improve the quality of the trajectories. In this way, the trajectories are smooth, avoiding the corners of walls and obstacles, and the potential slope is not too small, avoiding the difficulty of the numerical calculus of the trajectory. Results show that this method is able to deal with moving obstacles, and even for non-holonomic vehicles. The proposed method can be generalized to 3D or more dimensions and it can be used to move robot manipulators.

Keywords

Motion planning Harmonic functions Finite elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst. 6, 105–122 (1990)CrossRefGoogle Scholar
  2. 2.
    Arkin, R.C.: Behavior-Based Robotics. MIT, Cambridge (1998)Google Scholar
  3. 3.
    Connolly, C.I., Grupen, R.A.: The applications of harmonic functions to robotics. J. Robot. Syst. 10(7), 931–946 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Connolly, C.I.: Harmonic functions as a basis for motor control and planning. Ph.D. thesis, University of Massachussets, Amherst (1994)Google Scholar
  5. 5.
    Karnik, M., Dasgupta, B., Eswaran, V.: A comparative study of Dirichlet and Neumann conditions for path planning through harmonic functions. Future Gener. Comput. Syst. 20(3), 441–452 (2004)CrossRefGoogle Scholar
  6. 6.
    Kim, J.O., Khosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)CrossRefGoogle Scholar
  7. 7.
    Khatib, O.: Commande dynamique dans l’espace opérationnel des robots manipulateurs en présence d’obstacles. Ph.D. thesis, École Nationale Supérieure de l’Aéronautique et de l’Espace (ENSAE), Toulouse, France (1980)Google Scholar
  8. 8.
    Koditschek, D.E.: The control of natural motion in mechanical systems. J. Dyn. Syst. Meas. Control 113, 547–551 (1991)zbMATHCrossRefGoogle Scholar
  9. 9.
    Koditschek, D.E.: Some applications of natural motion. J. Dyn. Syst. Meas. Control 113, 552–557 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    PresteseSilva, E., Engel, P.M., Trevisan, M., Idiart, M.A.: Exploration method using harmonic functions. Robot. Auton. Syst. 40(1), 25–42 (2002)CrossRefGoogle Scholar
  11. 11.
    Trevisan, M., Idiart, M.A., Prestes, E., Engel, P.M.: Exploratory navigation based on dynamical boundary value problems. J. Intell. Robot. Syst. 45(2), 101–114 (2006)CrossRefGoogle Scholar
  12. 12.
    Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  13. 13.
    Rosell, J., Iñiguez, P.: Path planning using harmonic functions and probabilistic cell decomposition. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, ICRA2005, pp. 1803–1808 (2005)Google Scholar
  14. 14.
    Khosla, P., Volpe, R.: Manipulator control with superquadric artificial potential functions: theory and experiments. IEEE Trans. Syst. Man Cybern. 20(6), 1423–1436 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Santiago Garrido
    • 1
    Email author
  • Luis Moreno
    • 1
  • Dolores Blanco
    • 1
  • Fernando Martín Monar
    • 1
  1. 1.Carlos III UniversityMadridSpain

Personalised recommendations