Mobile Camera Localization Using Apollonius Circles and Virtual Landmarks

  • Rudi Penne
  • Luc Mertens
  • Jelle Veraart


We investigate the localization of a camera subject to a planar motion with horizontal optical axis in the presence of known vertical landmarks. Under these assumptions, a calibrated camera can measure the distance to the viewed landmarks. We propose to replace the trilateration method by intersecting a pair of Chasles-Apollonius circles. In the case of square pixels but unknown focal length we introduce a new method to recover the camera position from one image with three vertical landmarks. To this end we consider virtual landmarks and Apollonius-like circles. We extend this method in order to deal with an unknown principal point by using four landmarks.


Ego-motion Camera localization Planar geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, A., Rivlin, E., Rotstein, H.: Fusion of fixation and odometry for vehicle navigation. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1638–1643 (1999)Google Scholar
  2. 2.
    Antone, M., Teller, S.: Scalable extrinsic calibration of omni-directional image networks. Int. J. Comput. Vis. 49(2/3), 143–174 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13(2), 251–263 (1997)CrossRefGoogle Scholar
  4. 4.
    Claude, P., Laurent, D., El Mustapha, M., Pascal, V.: A mobile robot localization based on a multisensor cooperation approach. In: Proceedings of the IEEE IECON 22nd International Conference on Industrial Electronics, Control and Instrumentation, pp. 155–160 (1996)Google Scholar
  5. 5.
    Easton, A.C., Cameron, S.A.: A gaussian error model for triangulation-based pose estimation using noisy landmarks. In: IEEE International Conference on Robotics, Automation and Mechatronics (2006)Google Scholar
  6. 6.
    Gaspar, J., Lacey, G., Winters, N., Santos-Victor, J.: Omni-directional vision for robot navigation. In: IEEE Proc. Omnidirectional Vision 2000, pp. 21–28 (2000)Google Scholar
  7. 7.
    Kelly, A.: Precision dilution in triangulation based mobile robot position estimation. In: Intelligent Autonomous Systems (2003)Google Scholar
  8. 8.
    Mouaddib, E.M., Delahoche, L., Pegard, C., Vasseur, P.: Incremental map building for mobile robot navigation in an indoorenvironment. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2560–2565 (1998)Google Scholar
  9. 9.
    Quan, L., Faugeras, O.D., Sturm, P.: Self-calibration of a 1d projective camera and its application to the self-calibration of a 2d projective camera. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1179–1185 (2000)CrossRefGoogle Scholar
  10. 10.
    Servatius, B., Whiteley, W.: Constraining plane configurations in cad: Combinatorics of lengths and directions. SIAM J. Discrete Math. 12, 136–153 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shum, H., Han, M., Szeliski, R.: Interactive construction of 3d models from panoramic mosaics. In: Proc. CVPR, pp. 427–433 (1998)Google Scholar
  12. 12.
    Stewart, I.: De quel endroit la photo a-t-elle été prise?. In: Visions Gt’eometriques, pp 8–15. Belin (1994)Google Scholar
  13. 13.
    Sugihara, K.: Some location problem for robot navigation using a single camera. Comput. Vis. Graph. Image Process. 42, 112–129 (1988)CrossRefGoogle Scholar
  14. 14.
    Tripp, C.: Where is the camera? Math. Gaz. (March), 8–15 (1987)Google Scholar
  15. 15.
    Veraart, J.: Visietechnologie: ontwerp van een automatisch geleid voertuig. Master thesis, Department of Industrial Sciences, KDG, Antwerp (2007)Google Scholar
  16. 16.
    Whiteley, W.: Representing geometric configurations. In: Progress in Computer Science and Applied Logic, vol. 14, pp. 143–178. Birkhaüser, Boston (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of EngineeringKarel de Grote-HogeschoolAntwerpBelgium

Personalised recommendations